Mixable losses and Tracking the best Expert

Yoav Freund

January 22, 2014
Outline

Review

The general prediction game
Some useful loss functions
Vovk’s algorithm
mixable loss functions
The convexity condition
Log loss
Square loss
Square loss using simple averaging

Summary table

Switching Experts
An inefficient algorithm
The fixed-share algorithm
The variable-share algorithm
The log-loss game

- Prediction algorithm A has access to N experts.
- The following is repeated for $t = 1, \ldots, T$
 - Experts generate predictive distributions: p^t_1, \ldots, p^t_N
 - Algorithm generates its own prediction p^t_A
 - c^t is revealed.
- **Goal:** minimize regret:

\[
- \sum_{t=1}^{T} \log p^t_A(c^t) + \min_{i=1, \ldots, N} \left(- \sum_{t=1}^{T} \log p^t_i(c^t) \right)
\]
Mixable losses and Tracking the best Expert

Review

The online Bayes Algorithm

- **Total loss** of expert i

$$L_i^t = - \sum_{s=1}^{t} \log p_i^s(c^s); \quad L_i^0 = 0$$

- **Weight** of expert i

$$w_i^t = w_i^1 e^{-L_i^{t-1}} = w_i^1 \prod_{s=1}^{t-1} p_i^s(c^s)$$

- Freedom to choose initial weights.

$$w_i^1 \geq 0, \sum_{i=1}^{n} w_i^1 = 1$$

- **Prediction** of algorithm A

$$p_A^t = \frac{\sum_{i=1}^{N} w_i^t p_i^t}{\sum_{i=1}^{N} w_i^t}$$
Cumulative loss vs. Final total weight

Total weight: \(W_t = \sum_{i=1}^{N} w_i^t \)

\[
\frac{W_{t+1}}{W_t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A(c^t)
\]

\[- \log \frac{W_{t+1}}{W_t} = - \log p_A^t(c^t)\]

\[- \log W^{T+1} = - \log \frac{W^{T+1}}{W^1} = - \sum_{t=1}^{T} \log p_A^t(c^t) = L_A^T\]

EQUALITY not bound!
Vovk’s general prediction game

\[\Gamma \text{ - prediction space. } \Omega \text{ - outcome space.} \]

On each trial \(t = 1, 2, \ldots \)

1. Each expert \(i \in \{1 \ldots N\} \) makes a prediction \(\gamma_i^t \in \Gamma \)
2. The learner, after observing \(\langle \gamma_1^t \ldots \gamma_N^t \rangle \), makes its own prediction \(\gamma^t \)
3. Nature chooses an outcome \(\omega^t \in \Omega \)
4. Each expert incurs loss \(\ell_i^t = \lambda(\omega^t, \gamma_i^t) \)
 The learner incurs loss \(\ell_A^t = \lambda(\omega^t, \gamma^t) \)
Achievable loss bounds

- $L_A = \sum_{t=1}^{T} \ell_A^t$ - total loss of algorithm
- $L_i = \sum_{t=1}^{T} \ell_i^t$ - total loss of expert i
- **Goal:** find an algorithm which guarantees that

\[(a, c) \in [0, \infty), \quad L_A \leq aL_{\text{min}} + c \ln N\]

For any sequence of events.

- We say that the pair (a, c) is achievable.
The set of achievable bounds

- Fix loss function $\lambda : \Omega \times \Gamma \rightarrow [0, \infty)$
- The pair (a, c) is achievable if there exists some prediction algorithm such that for any $N > 0$, any set of N prediction sequences and any sequence of outcomes

$$L_A \leq aL_{\text{min}} + c \ln N$$
Some useful loss functions

- **Outcomes:** $\omega^1, \omega_2, \ldots, \omega^t \in [0, 1]$
- **Predictions:** $\gamma^1, \gamma^2, \ldots, \gamma^t \in [0, 1]$
Some useful loss functions

Log loss (Entropy loss)

\[\lambda_{\text{ent}}(\omega, \gamma) = \omega \ln \frac{\omega}{\gamma} + (1 - \omega) \ln \frac{1 - \omega}{1 - \gamma} \]

- When \(q_t \in \{0, 1\} \) Cumulative log loss = coding length \(\pm 1 \)
- If \(P[\omega_t = 1] = q \), optimal prediction \(\gamma^t = q \)
- Unbounded loss.
- Not symmetric \(\exists p, q \) \(\lambda(p, q) \neq \lambda(q, p) \).
- No triangle inequality
 \(\exists p_1, p_2, p_3 \) \(\lambda(p_1, p_3) > \lambda(p_1, p_2) + \lambda(p_2, p_3) \)
Square loss (Breier Loss)

\[\lambda_{sq}(\omega, \gamma) = (\omega - \gamma)^2 \]

- \(P[\omega^t = 1] = q, \; P[\omega^t = 0] = 1 - q \),
 optimal prediction \(\gamma^t = q \)
- Bounded loss.
- Defines a metric (symmetric and triangle ineq.)
- Corresponds to regression.
Mixable losses and Tracking the best Expert

Some useful loss functions

Hellinger Loss

\[
\lambda_{\text{hel}}(\omega, \gamma) = \frac{1}{2} \left((\sqrt{\omega} + \sqrt{\gamma})^2 + (\sqrt{1-\omega} + \sqrt{1-\gamma})^2 \right)
\]

- If \(P[\omega^t = 1] = q, \ P[\omega^t = 0] = 1 - q \), optimal prediction \(\gamma^t = q \)
- Loss is bounded.
- Defines a metric.
- \(\lambda_{\text{hel}}(p, q) \approx \lambda_{\text{ent}}(p, q) \) when \(p \approx q \) and \(p, q \in (0, 1) \)
Mixable losses and Tracking the best Expert

Some useful loss functions

Absolute loss

\[\lambda(\omega, \gamma) = |\omega - \gamma| \]

- Probability of making a mistake if predicting 0 or 1 using a biased coin
- If \(P[\omega^t = 1] = q, \quad P[\omega^t = 0] = 1 - q \), then the optimal prediction is

\[\gamma^t = \begin{cases}
1 & \text{if } q > 1/2, \\
0 & \text{otherwise}
\end{cases} \]
Structureless bounded loss

- Prediction is a distribution $\gamma = \langle p_1, \ldots, p_N \rangle$, $p_i \geq 0$, $\sum_{i=1}^N p_i = 1$
- Outcome is a loss vector $\omega = \langle \omega_1, \ldots, \omega_N \rangle$, $0 \leq \omega_i \leq 1$
- Loss is the dot product: $\lambda_{\text{dot}}(\omega, \gamma) = \gamma \cdot \omega$
- Corresponds to the hedging game.
- For hedge loss the regret is $\Omega(\sqrt{T \log N})$.
- For the log loss the regret is $O(\log N)$

Which losses behave like entropy loss and which behave like hedge loss?
Some technical requirements

- There should be a **topology** on the prediction set Γ such that
- Γ is compact.
- $\forall \omega \in \Omega$, the function $\gamma \rightarrow \lambda(\omega, \gamma)$ is **continuous**
- There is a **universally reasonable prediction**
 $\exists \gamma \in \Gamma, \forall \omega \in \Omega, \lambda(\omega, \gamma) < \infty$
- There is **no universally optimal prediction**
 $\neg \exists \gamma \in \Gamma, \forall \omega \in \Omega, \lambda(\omega, \gamma) = 0$
Vovk’s meta-algorithm

- Fix an achievable pair \((a, c)\) and set \(\eta = a/c\)
- 1. \(W_t^i = \frac{1}{N} e^{-\eta L_t^i}\)

Choose \(\gamma_t\) so that, for all \(\omega^t \in \Omega\):

\[
\lambda(\omega^t, \gamma^t) - c \ln \sum_i W_t^i \leq -c \ln \left(\sum_i W_t^i e^{-\eta \lambda(\omega^t, \gamma_t^i)} \right)
\]

2. If choice of \(\gamma^t\) always exists, then the total loss satisfies:

\[
\sum_t \lambda(\omega^t, \gamma^t) \leq -c \ln \sum_i W_i^{T+1} \leq aL_{\text{min}} + c \ln N
\]

- Vovk’s result: \textit{yes!} a good choice for \(\gamma_t\) always exists!
Vovk’s algorithm is the highest achiever [Vovk95]

The pair \((a, c)\) is achieved by some algorithm if and only if it is achieved by Vovk’s algorithm.

The separation curve is \(\{(a(\eta), \frac{a(\eta)}{\eta}) \mid \eta \in [0, \infty]\}\)
Mixable Loss Functions

- A Loss function is **mixable** if a pair of the form \((1, c), \ c < \infty\) is achievable.

\[
L_A \leq L_{\min} + c \ln N
\]

- Vovk’s algorithm with \(\eta = 1/c\) achieves this bound.
- \(\lambda_{\text{ent}}, \lambda_{\text{sq}}, \lambda_{\text{hel}}\) are **mixable**
- \(\lambda_{\text{abs}}, \lambda_{\text{dot}}\) are **not mixable**
The convexity condition

- requirement for loss to be \((1, 1/\eta)\) mixable
- \(\forall \langle (\gamma_1, W_1), \ldots, (\gamma_N, W_N) \rangle\)
 \[\exists \gamma \in \Gamma \quad \forall \omega \in \Omega:\]
 \[\lambda(\omega, \gamma) - \frac{1}{\eta} \ln \sum_i W_i \leq -\frac{1}{\eta} \ln \left(\sum_i W_i e^{-\eta \lambda(\omega, \gamma_i)} \right)\]

- Can be re-written as:
 \[e^{-\eta \lambda(\omega, \gamma)} \geq \sum_i \left(\frac{W_i}{\sum_j W_j} \right) e^{-\eta \lambda(\omega, \gamma_i)}\]

- Equivalently - the image of the set \(\Gamma\) under the mapping \(F(\gamma) = \langle e^{-\eta \lambda(\omega, \gamma)} \rangle_{\omega \in \Omega}\) is concave.
Mixable losses and Tracking the best Expert

The convexity condition

convexity condition: Pictorially

Example: Suppose $\Omega = \{0, 1\}$, $\Gamma = [0, 1]$. Then

$$F(\gamma) = \left\langle e^{-\eta \lambda(0, \gamma)}, e^{-\eta \lambda(1, \gamma)} \right\rangle$$
Vovk Algorithm for log loss

- The log loss is mixable with $\eta = 1$
- The image of $[0, 1]$ through $F(\gamma) = \langle e^{-\eta\lambda(0, \gamma)}, e^{-\eta\lambda(1, \gamma)} \rangle$ is a straight line segment.
- The only satisfactory prediction is

$$\gamma = \frac{\sum_i W_i \gamma_i}{\sum_i W_i}$$

- We are back to the online Bayes algorithm.
Vovk algorithm for square loss

- The square loss is mixable with $\eta = 2$.
- Prediction must satisfy

$$1 - \sqrt{-\frac{1}{2} \ln \sum_i V_i^t e^{-2(1 - p_i^t)^2}} \leq p^t \leq \sqrt{-\frac{1}{2} \ln \sum_i V_i^t e^{-2(p_i^t)^2}}$$

where $V_i^t = \frac{W_i^t}{\sum_s W_i^s}$.

- $$L_A \leq L_{\text{min}} + \frac{1}{2} \ln N$$
Simple prediction for square loss

- We can use the prediction

\[\gamma = \frac{\sum_i W_i \gamma_i}{\sum_i W_i} \]

- But in that case we must use \(\eta = 1/2 \) when updating the weights.
- Which yields the bound

\[L_A \leq L_{\text{min}} + 2 \ln N \]
Summary of bounds for mixable losses

Tracking the Best Expert

<table>
<thead>
<tr>
<th>Loss Functions:</th>
<th>c values: $(\eta = 1/c)$</th>
</tr>
</thead>
</table>
| $L_{sq}(p, q)$ | $\text{pred}_{\text{wmean}}(v, x)$: 2
| | $\text{pred}_{\text{Vovk}}(v, x)$: $1/2$ |
| $L_{ent}(p, q)$ | 1
| | 1 |
| $L_{hel}(p, q)$ | 1
| | $1/\sqrt{2}$ |

Figure 2. $(c, 1/c)$-realizability: c values for loss and prediction function pairing.
Switching experts setup

- **Usually**: compare algorithm’s total loss to total loss of the best expert.
- **Switching experts**: compare algorithm’s total loss to total loss of best expert sequence with k switches.
An inefficient algorithm

- **Fix:**
 - l - sequence length
 - k - number of switches
 - n - number of experts

- Consider one **partition-expert** per sequence of switching experts.

- **No. of partition-experts**:
 \[(k-1)n(n-1)^k = O\left(n^{k+1}\left(\frac{el}{k}\right)^k\right)\]

- The log-loss regret is at most
 \[(k + 1) \log n + k \log \frac{l}{k} + k\]

- Requires maintaining \[O\left(n^{k+1}\left(\frac{el}{k}\right)^k\right)\] weights.
generalization to mixable losses

- In this lecture we assume loss function is **mixable**.
- There is an exponential weights algorithm with learning rate η that achieves (in the non-switching case) a bound
 \[L_A \leq \min_i L_i + \frac{1}{\eta} \log n \]

- Then using the **partition-expert** algorithm for the switching-experts case we get a bound on the regret
 \[\frac{1}{\eta}\left((k + 1) \log n + k \log \frac{l}{k} + k\right) \]
Weight sharing algorithms

- Update weights in two stages: loss update then share update.
- Prediction uses the normalized s weights $w_{t,i}^s / \sum_j w_{t,j}^s$.
- Loss update is the same as always, but defines intermediate m weights:
 \[w_{t,i}^m = w_{t,i}^s e^{-\eta L(y_t,x_{t,i})} \]

- Share update: redistribute the weights
- Fixed-share:
 \[\text{pool} = \alpha \sum_{i=1}^{n} w_{t,i}^m \]
 \[w_{t+1,i}^s = (1 - \alpha) w_{t,i}^m + \frac{1}{n-1} (\text{pool} - \alpha w_{t,i}^m) \]
The fixed-share algorithm

Mixable losses and Tracking the best Expert

The fixed-share algorithm

\[W_1 \ W_2 \ W_3 \ W_6 \ W_5 \ W_4 \]

Pool \[a \]

\[1-a \]

\[\begin{array}{cccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
W_1 & W_2 & W_3 & W_4 & W_5 & W_6 \\
\end{array} \]

\[a \]

\[1-a \]
Proving a bound on the fixed-share

- The relation between algorithm loss and total weight does not change because share update does not change the total weight.
- Thus we still have

\[L_A \leq \frac{1}{\eta} \sum_{i=1}^{n} w_{l+1, i} \]

- The harder question is how to lower bound \(\sum_{i=1}^{n} w_{l+1, i} \)
Lower bounding the final total weight

- Fix some switching experts sequence:

- “follow” the weight of the chosen expert i_t.
- The loss update reduces the weight by a factor of $e^{-\eta \ell_{t,i_t}}$.
- The share update reduces the weight by a factor larger than:
 - $1 - \alpha$ on iterations with no switch.
 - $\frac{\alpha}{n-1}$ on iterations where a switch occurs.
Mixable losses and Tracking the best Expert

The fixed-share algorithm

Bound for arbitrary α

- Combining we lower bound the final weight of the last expert in the sequence

$$w_{l+1,e_k}^s \geq \frac{1}{n} e^{-\eta L^*} (1 - \alpha)^{l-k-1} \left(\frac{\alpha}{n-1} \right)^k$$

Where L^* is the cumulative loss of the switching sequence of experts.

- Combining the upper and lower bounds we get that for any sequence

$$L_A \leq L^* + \frac{1}{\eta} \left(\ln n + (l - k - 1) \ln \frac{1}{1 - \alpha} + k \left(\ln \frac{1}{\alpha} + \ln (n - 1) \right) \right)$$
Mixable losses and Tracking the best Expert

The fixed-share algorithm

Tuning α

- let k^* be the best number of switches (in hind sight) and $\alpha^* = k^*/l$
- Suppose we use $\alpha \approx \alpha^*$ then the bound that we get is

$$L_A \leq L_* + \frac{1}{\eta} ((k + 1) \ln n + (l - 1)(H(\alpha^*) + D_{KL}(\alpha^*||\alpha)))$$

Where

$$H(\alpha^*) = -\alpha^* \ln \alpha^* - (1 - \alpha^*) \ln (1 - \alpha^*)$$

$$D_{KL}(\alpha^*||\alpha) = \alpha^* \ln \frac{\alpha^*}{\alpha} (1 - \alpha^*) \ln \frac{1 - \alpha^*}{1 - \alpha}$$

- This is very close to the loss of the computationally inefficient algorithm.
- For the log loss case this is essentially optimal.
- Not so for square loss!
What can we hope to improve?

► In the fixed-share algorithm, the weight of a suboptimal expert never decreases below α/n.
► The algorithm does not concentrate only on the best expert, even if the last switch is in the distant past.
► The regret depends on the length of the sequence.
The idea of variable-share

- Let the fraction of the total weight given to the best expert get arbitrarily close to 1.
- We can get a regret bound that depends only on the number of switches, not on the length of the sequence.
- Requires that the loss be bounded.
- Works for square loss, but not for log loss!
Variable-share

\[\text{pool} = \sum_{i=1}^{n} \left(1 - (1 - \alpha)^{\ell_{t,i}} \right) w_{t,i}^m \]

\[w_{t+1,i}^s = (1 - \alpha)^{\ell_{t,i}} w_{t,i}^m + \frac{1}{n-1} \left(\text{pool} - \left(1 - (1 - \alpha)^{\ell_{t,i}} \right) w_{t,i}^m \right) \]

If \(\ell_{t,i} = 0 \), then expert \(i \) does not contribute to the pool. Expert can get fraction of the total weight arbitrarily close to 1. Shares the weight quickly if \(\ell_{t,i} > 0 \).
Bound for variable share

\[\frac{1}{\eta} \ln n + \left(1 + \frac{1}{(1 - \alpha)\eta} \right) L^* + k \left(1 + \frac{1}{\eta} \left(\ln n - 1 + \ln \frac{1}{\alpha} + \ln \frac{1}{1 - \alpha} \right) \right) \]

\(\alpha \) should be tuned so that it is (close to) \(\frac{k}{2k + L^*} \)
Mixable losses and Tracking the best Expert

The variable-share algorithm

Variable share figure

Small loss — small contribution to share

Large loss — Large contribution to share

W1
W6
W2
W3
W4
W5

W6
An experiment using variable share
Next Class

- Suppose the best switching sequence is repeatedly switching among a small subset of the experts \(n' \ll n \)
- In the context of speech recognition - the speaker repeatedly uses a small number of phonemes.
- If we know the subset, we can pay \(\ln n' \) per switch rather than \(\ln n \)
- Can track switches much more closely.
- Easy to describe an inefficient algorithm (consider all \(\binom{n}{n'} \) subsets.)
- Next class - how to do as well with just one weight per expert.