Biased coins and the Context algorithm

Yoav Freund

January 15, 2014
Outline

Combining experts in the log loss framework
The online Bayes Algorithm
The performance bound
Comparison with Bayesian Statistics
Computational issues
The Universal prediction machine
The biased coins set of experts
Generalization to larger sets of distributions
Fixed Length Markov Models
Variable Length Markov Model (VMM)
Assigning weights to trees
Learning the structure, an inefficient solution
Efficient Implementation
The log-loss framework

- Algorithm A predicts a sequence c^1, c^2, \ldots, c^T over alphabet $\Sigma = \{1, 2, \ldots, k\}$
- The prediction for the c^tth is a distribution over Σ:
 $$p^t_A = \langle p^t_A(1), p^t_A(2), \ldots, p^t_A(k) \rangle$$
- When c^t is revealed, the loss we suffer is $-\log p^t_A(c^t)$
- The cumulative log loss, which we wish to minimize, is
 $$L^T_A = -\sum_{t=1}^{T} \log p^t_A(c^t)$$
- $\lceil L^T_A \rceil$ is the code length if A is combined with arithmetic coding.
The game

- Prediction algorithm A has access to N experts.
- The following is repeated for $t = 1, \ldots, T$
 - Experts generate predictive distributions: p^t_1, \ldots, p^t_N
 - Algorithm generates its own prediction p^t_A
 - c^t is revealed.

- **Goal:** minimize regret:

$$
- \sum_{t=1}^{T} \log p^t_A(c^t) + \min_{i=1, \ldots, N} \left(- \sum_{t=1}^{T} \log p^t_i(c^t) \right)
$$
The online Bayes Algorithm

- **Total loss** of expert i

 \[L_i^t = - \sum_{s=1}^{t} \log p_i^s(c^s); \quad L_i^0 = 0 \]

- **Weight** of expert i

 \[w_i^t = w_i^1 e^{-L_i^{t-1}} = w_i^1 \prod_{s=1}^{t-1} p_i^s(c^s) \]

- Freedom to choose initial weights.

 \[w_i^1 \geq 0, \quad \sum_{i=1}^{n} w_i^1 = 1 \]

- **Prediction** of algorithm A

 \[p_A^t = \frac{\sum_{i=1}^{N} w_i^t p_i^t}{\sum_{i=1}^{N} w_i^t} \]
Cumulative loss vs. Final total weight

Total weight: \(W^t = \sum_{i=1}^{N} w^t_i \)

\[
\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w^t_i e^{\log p^t_i(c^t)}}{\sum_{i=1}^{N} w^t_i} = \frac{\sum_{i=1}^{N} w^t_i p^t_i(c^t)}{\sum_{i=1}^{N} w^t_i} = p^t_A(c^t)
\]

\[-\log \frac{W^{t+1}}{W^t} = -\log p^t_A(c^t)\]

\[-\log W^{T+1} = -\log \frac{W^{T+1}}{W^1} = -\sum_{t=1}^{T} \log p^t_A(c^t) = L^T_A\]

EQUALITY not bound!
Simple Bound

- Use uniform initial weights $w_i^1 = 1/N$
- Total Weight is at least the weight of the best expert.

$$L_A^T = -\log W^{T+1} = -\log \sum_{i=1}^{N} w_i^{T+1}$$

$$= -\log \sum_{i=1}^{N} \frac{1}{N} e^{-L_i^T} = \log N - \log \sum_{i=1}^{N} e^{-L_i^T}$$

$$\leq \log N - \log \max_i e^{-L_i^T} = \log N + \min_i L_i^T$$

- Dividing by T we get $\frac{L_A^T}{T} = \min_i \frac{L_i^T}{T} + \frac{\log N}{T}$
Bound better than for two part codes

- Simple bound as good as bound for two part codes (MDL) but enables online compression
- Suppose we have K copies of each expert.
- Two part code has to point to one of the KN experts
 \[L_A \leq \log NK + \min_i L_i^T = \log NK + \min_i L_i^T \]
- If we use Bayes predictor + arithmetic coding we get:
 \[L_A = - \log W^{T+1} \leq \log K \max_i \frac{1}{NK} e^{-L_i^T} = \log N + \min_i L_i^T \]
- We don’t pay a penalty for copies.
- More generally, the regret is smaller if many of the experts perform well.
Comparison with standard Bayesian statistics

- The weight update rule is the same.
- Normalized weights = posterior probability distribution.
- Bayesian analysis interested in the final posterior.
- Bayesian analysis assumes the data is generated by a distribution in the support of the prior.
- Goal of Bayesian is to estimate true distribution, goal of online learning is to minimize regret.
- Optimality of algorithm is axiom of Bayesian statistics.
- Bayesian methods perform poorly when the loss is not log loss and the data not generated by a distribution in the support.
 - Loss can sometimes be defined through the noise distribution: square loss is equivalent to assuming Gaussian noise.
 - For number of mistakes - Bayesian method cannot be “fixed”. Requires variable learning rate.
Computational Issues

- Naive implementation: calculate the prediction of each of the N experts.
- Puts severe limit on number of experts.
- What if set of experts is uncountably infinite.
- Bayesian tricks:
 - **Conjugate priors**: A prior over a continuous domain whose functional form does not change with when updated. Number of parameters defining posterior is constant. Update rule translates into update of parameters. Parameters correspond to “sufficient statistics”. exists for the family of exponential distributions.
 - **Markov Chain Monte Carlo** Sample the posterior. Can sometimes be done efficiently. Efficient sampling relates to mixing rate of markov chain whose limit dist is the posterior dist.
Complex Expert Sets

The Universal prediction machine

Standardizing online prediction algorithms

- Fix a universal Turing machine U.
- An online prediction algorithm E is a program that
 - given as input The past $\vec{X} \in \{0, 1\}^t$
 - runs finite time and outputs
 - A prediction for the next bit $p(\vec{X}) \in [0, 1]$.
 - To ensure p has a finite description. Restrict to rational numbers n/m
- Any online prediction algorithm can be represented as code $\vec{b}(E)$ for U. The code length is $|\vec{b}(E)|$.
- Most sequences do not correspond to valid prediction algorithms.
- $V(\vec{b}, \vec{X}, t) = 1$ if the program \vec{b}, given \vec{X} as input, halts within t steps and outputs a well-formed prediction. Otherwise $V(\vec{b}, \vec{X}, t) = 0$
- $V(\vec{b}, \vec{X}, t)$ is computable (recursively enumerable).
A universal prediction machine

- Assign to the code \vec{b} the initial weight $w^1_{\vec{b}} = 2^{-|\vec{b}| - \log_2 |\vec{b}|}$.
- The total initial weight over all finite binary sequences is one.
- Run the Bayes algorithm over “all” prediction algorithms.
- **technical details:** On iteration t, $|\vec{X}| = t$. Use the predictions of programs \vec{b} such that $|\vec{b}| \leq t$ and for which $V(\vec{b}, \vec{X}, 2^t) = 1$. Assigning the remaining mass the prediction $1/2$ (insuring a loss of 1)
Performance of the universal prediction algorithm

- Using $L_A \leq \min_i (L_i - \log w_i^1)$
- Assume E is a prediction algorithm which generates the tth prediction in time smaller than 2^t
- When $t \leq |\vec{b}(E)|$ the algorithm is not used and thus it’s loss is 1
- We get that the loss of the Universal algorithm is at most $2|\vec{b}(E)| + \log_2 |\vec{b}(E)| + L_E$
- More careful analysis can reduce $2|\vec{b}(E)| + \log_2 |\vec{b}(E)|$ to $|\vec{b}(E)|$
- Code length is arbitrarily close to the Kolmogorov Complexity of the sequence.
- Ridiculously bad running time.
Bayes coding is better than two part codes

- Simple bound as good as bound for two part codes (MDL) but enables online compression
- Suppose we have K copies of each expert.
- Two part code has to point to one of the KN experts
 \[L_A \leq \log NK + \min_i L_i^T = \log NK + \min_i L_i^T \]
- If we use Bayes predictor + arithmetic coding we get:
 \[L_A = -\log W^{T+1} \leq \log K \max_i \frac{1}{NK} e^{-L_i^T} = \log N + \min_i L_i^T \]

- We don’t pay a penalty for copies.
- More generally, the regret is smaller if many of the experts perform well.
The biased coins set of experts

- Each expert corresponds to a biased coin, predicts with a fixed $\theta \in [0, 1]$.
- Set of experts is uncountably infinite.
- Only countably many experts can be assigned non-zero weight.
- Instead, we assign the experts a Density Measure.
- $L_A \leq \min_i (L_i - \log w_i)$ is meaningless.
- Can we still get a meaningful bound?
Bayes Algorithm for biased coins

- Replace the initial weight by a density measure
 \[w(\theta) = w^1(\theta), \int_0^1 w(\theta) d\theta = 1 \]

- Relationship between final total weight and total log loss remains unchanged:
 \[
 L_A = \ln \int_0^1 w(\theta) e^{-L_{\theta}^{T+1}} d\theta
 \]

- We need a new lower bound on the final total weight
Main Idea

If $w^t(\theta)$ is large then $w^t(\theta + \epsilon)$ is also large.
Expanding the exponent around the peak

For log loss the best θ is empirical distribution of the seq.

$$\hat{\theta} = \frac{\# \{ x^t = 1; 1 \leq t \leq T \}}{T}$$

The total loss scales with T

$$L_\theta = T \cdot (\hat{\theta} \ell(\theta, 1) + (1 - \hat{\theta}) \ell(\theta, 0)) = T \cdot g(\hat{\theta}, \theta)$$

$$L_A - L_{\text{min}} \leq \ln \int_0^1 w(\theta) e^{-L_\theta} d\theta - \ln e^{L_{\text{min}}} = \ln \int_0^1 w(\theta) e^{-(L_\theta - L_{\text{min}})} d\theta = \ln \int_0^1 w(\theta) e^{T(g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta}))} d\theta$$
Laplace approximation (idea)

- Taylor expansion of $g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta})$ around $\theta = \hat{\theta}$.
- First and second terms in the expansion are zero.
- Third term gives a quadratic expression in the exponent
- \Rightarrow a gaussian approximation of the posterior.
Laplace Approximation (details)

\[
\int_{0}^{1} w(\theta) e^{T(g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta}))} d\theta \\
= w(\hat{\theta}) \sqrt{\frac{-2\pi}{T \frac{d^2}{d\theta^2} \bigg|_{\theta=\hat{\theta}} (g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta}))}} + O(T^{-3/2})
\]
Choosing the optimal prior

- Choose $w(\theta)$ to maximize the worst-case final total weight

$$\min_{\hat{\theta}} w(\hat{\theta}) \sqrt{ -2\pi \left(T \frac{d^2}{d\theta^2}\Big|_{\theta=\hat{\theta}} (g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta})) \right) }$$

- Make bound equal for all $\hat{\theta} \in [0, 1]$ by choosing

$$w^*(\hat{\theta}) = \frac{1}{Z} \sqrt{ -2\pi \left(\frac{d^2}{d\theta^2}\Big|_{\theta=\hat{\theta}} (g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta})) \right) } ,$$

where Z is the normalization factor:

$$Z = \sqrt{\frac{1}{2\pi}} \int_{0}^{1} \sqrt{ \frac{d^2}{d\theta^2}\Big|_{\theta=\hat{\theta}} (g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta})) } \, d\hat{\theta}$$
The bound for the optimal prior

Plugging in we get

\[L_A - L_{\text{min}} \leq \ln \int_0^1 w^*(\theta) e^{T(g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta}))} d\theta \]

\[= \ln \left(\sqrt{\frac{2\pi Z}{T}} + O(T^{-3/2}) \right) \]

\[= \frac{1}{2} \ln \frac{T}{2\pi} - \frac{1}{2} \ln Z + O(1/T) . \]
Solving for log-loss

- The exponent in the integral is

\[g(\hat{\theta}, \theta) - g(\hat{\theta}, \hat{\theta}) = \hat{\theta} \ln \frac{\hat{\theta}}{\theta} + (1 - \hat{\theta}) \ln \frac{1 - \hat{\theta}}{1 - \theta} = D_{KL}(\hat{\theta} || \theta) \]

- The second derivative

\[\left. \frac{d^2}{d\theta^2} D_{KL}(\hat{\theta} || \theta) \right|_{\theta = \hat{\theta}} = \hat{\theta} (1 - \hat{\theta}) \]

Is called the empirical Fisher information

- The optimal prior:

\[w^*(\hat{\theta}) = \frac{1}{\pi \sqrt{\hat{\theta} (1 - \hat{\theta})}} \]

Known in general as Jeffrey’s prior. And, in this case, the Dirichlet-(1/2, 1/2) prior.
The cumulative log loss of Bayes using Jeffrey’s prior

\[L_A - L_{\text{min}} \leq \frac{1}{2} \ln(T + 1) + \frac{1}{2} \ln \frac{\pi}{2} + O(1/T) \]
But what is the prediction rule?

- As luck would have it the Dirichlet prior is the **conjugate prior** for the Binomial distribution.
- Observed t bits, n of which were 1. The posterior is:

$$
\frac{1}{Z \sqrt{\theta(1-\theta)}} \theta^n (1-\theta)^{t-n} = \frac{1}{Z} \theta^{n-1/2} (1-\theta)^{t-n-1/2}
$$

- The posterior average is:

$$
\int_0^1 \frac{\theta^{n+1/2} (1-\theta)^{t-n-1/2} d\theta}{\int_0^1 \theta^{n-1/2} (1-\theta)^{t-n-1/2} d\theta} = \frac{n + 1/2}{t + 1}
$$

- This is called the Trichevsky Trofimov prediction rule.
Laplace Rule of Succession

- Laplace suggested using the uniform prior, which is also a conjugate prior.
- In this case the posterior average is:

\[
\frac{\int_0^1 \theta^{n+1}(1 - \theta)^{t-n} d\theta}{\int_0^1 \theta^n(1 - \theta)^{t-n} d\theta} = \frac{n + 1}{t + 2}
\]

- The bound on the cumulative log loss is worse:

\[L_A - L_{\min} = \ln T + O(1)\]

- Suffers larger regret when \(\hat{\theta}\) is far from \(1/2\)
Shtarkov Lower bound

What is the optimal prediction when T is known in advance?

\[L^*_T - \min_{\theta} L^T_{\theta} \geq \frac{1}{2} \ln(T + 1) + \frac{1}{2} \ln \frac{\pi}{2} - O\left(\frac{1}{\sqrt{T}}\right) \]
Multinomial Distributions

- For a distribution over k elements (Multinomial) [Xie and Barron]
- Use the add 1/2 rule (KT).

\[
p(i) = \frac{n_i + 1/2}{t + k/2}
\]

- Bound is

\[
L_A - L_{\text{min}} \leq \frac{k - 1}{2} \ln T + C + o(1)
\]

- The constant C is optimal.
Exponential Distributions

- For any set of distributions from the exponential family defined by k parameters (constituting an open set) [Rissanen96]
- Use Bayes Algorithm with Jeffrey’s prior:

$$w^*(\hat{\theta}) = \frac{1}{Z} \frac{1}{\sqrt{H(D_{KL}(\hat{\theta} || \theta)\big|_{\theta=\hat{\theta}})}}$$

H denotes the Hessian.

- $L_A - L_{\text{min}} \leq \frac{k - 1}{2} \ln T - \ln Z + o(1)$
General Distributions

- Characterize distribution family by metric entropy.
- Fixed parameter set usually corresponds to polynomial metrix entropy
 \[N(1/\epsilon) = O\left(\frac{1}{\epsilon^d}\right) \]
 \(d\) is the number of parameters.
- [Haussler and Opper] show that the coefficient in front of \(\ln T\) is optimal for distribution families where the metric entropy is up to
 \[N(1/\epsilon) = O\left(e^{\epsilon^{-\alpha}}\right) \]
 For all \(\alpha \leq 5/2\).
A fixed length Markov Model

- Observe a binary sequence.
 - x_1, \ldots, x_{t-1}
- Predict next bit from past
 - $P(x_t = 1 \mid x_{t-1}, x_{t-2}, \ldots, x_1)$
- Use only last k bits
 - $P(x_t = 1 \mid x_{t-1}, \ldots, x_{t-k})$
- Markov model of order k
Learning a markov distribution

- Each tree leaf is associated with a binary sequence y_1, \ldots, y_k

- For each leaf keep two counters:
 - a_{y_1,\ldots,y_k} = number of times $x_{t-1} = y_1, \ldots, x_{t-k} = y_k$ and $x_t = 0$
 - b_{y_1,\ldots,y_k} = number of times $x_{t-1} = y_1, \ldots, x_{t-k} = y_k$ and $x_t = 1$

- Prediction (using Kritchevski Trofimov)

$$p(x_t = 1|x_{t-1} = y_1, \ldots, x_{t-k} = y_k) = \frac{b_{y_1,\ldots,y_k} + 1/2}{a_{y_1,\ldots,y_k} + b_{y_1,\ldots,y_k} + 1}$$

- Total regret is at most $2^{k-1} \log T$
How variable length markov can reduce regret

- Reducing number of leaves from 8 to 4 means
- reducing regret from $4 \log T$ to $2 \log T$
- English example: B A R O Q U E
- When we have little data, we can get better prediction even if the children are not Exactly the same
Prefix trees

- In a prefix binary tree each node has either 0 or 2 children.
- A node with 1 child means that some past histories are not covered.
- A variable length markov model corresponds to a prefix tree.
- But we don’t know which prefix tree to use!
Assigning probabilities to complete sequences

- Using the chain rule, we can use a prediction rule to assign probabilities to a complete sequence.

\[P(x_1 = y_1, \ldots, x_T = y_T) = p(x_1 = y_1)p(x_2 = y_2|x_1 = y_1) \ldots \]

- We can translate probabilities for complete sequences back into predictions.

\[p(x_t = 1|x_1 = y_1, \ldots, x_{t-1} = y_{t-1}) = \frac{p(x_1 = y_1, \ldots, x_{t-1} = y_{t-1}, x_t = 1)}{p(x_1 = y_1, \ldots, x_{t-1} = y_{t-1})} \]

- Will come in handy soon!
Using online Bayes to learn the structure

- We assign to each tree an initial weight of 2^{-n} where n is the number of nodes in the prefix tree.
- We combine the predictions of the trees using online Bayes.
- The total regret would be $\frac{1}{2} \log T + n$ where l is the number of leaves in the prefix tree.
- The papers do things slightly differently because they bound the depth of the tree by k.
- This algorithm maintains a weight for each tree.
- Requires maintaining $O(2^l)$ weights!
Efficient implementation

- **First idea**: Estimate probabilities of complete sequences and use conditional to generate predictions.
- The prior weights are used for averaging the complete sequence probabilities - they don’t need to be updated.
- **Second idea**: Compute the average over the prior efficiently.
Efficient generation of prior

- Prior distribution is generated by a stochastic recursion.
- Start with root node (always exists)
- For each node flip a fair coin.
 - **Heads** Set node to be a leaf (0 children)
 - **Tails** Create 2 children nodes to the node.
- Defines a distribution over all prefix trees.
- Probability of a tree with n nodes is 2^{-n}
Efficient averaging over the prior (observations)

- Maintain a KT estimator at each node of the tree.
- Allocate counters only once node is visited.
- At iteration t only t counters need to be updated.
- Only k counters if depth of tree is bounded.
- Each node is visited on a subset of the iterations.
- Subset corresponding to node is contained in subset corresponding to node’s parent.
Efficient averaging over the prior (procedure)

- \(P_{e}(a_{s}, b_{s}) \) the probability that the KT estimator at node \(s = \langle y_1, \ldots, y_k \rangle \) assigns to its subsequence of the past.

- \(P_{w}^{s} \) the \textbf{average probability} assigned to the subsequence over all VMM rooted at the node \(s \)

\[
P_{w}^{s} = \frac{P_{e}(a_{s}, b_{s}) + P_{w}^{0s}P_{w}^{1s}}{2}
\]

- Average probability assigned by the complete tree is \(P_{w}^{\lambda} \) where \(\lambda \) is the root node.
Context-Tree Weighting and Maximizing: Processing Betas

Frans Willems, Tjalling Tjalkens, and Tanya Ignatenko,
Eindhoven University of Technology,
Eindhoven, The Netherlands
Switch to second set of slides.