Blackwell Approachability and Forcing Halfspaces
CSE 254: Online Learning

Akshay Balsubramani

Mar. 13, 2014
Basic Results

Classic minimax theorem for two-player zero-sum games:

Theorem (von Neumann, 1947)

*If the players have discrete strategy spaces \([n], [m]\) and the game has payoff function \(u : [n] \times [m] \mapsto \mathbb{R}\),

\[
\max_{p \in \Delta_n} \min_{q \in \Delta_m} \sum_{i \in [n], j \in [m]} p_i q_j u(i, j) = \min_{q \in \Delta_m} \max_{p \in \Delta_n} \sum_{i \in [n], j \in [m]} p_i q_j u(i, j)
\]
Basic Results

"Optimization" variant

Theorem (Sion, 1958)

If the players have convex compact strategy spaces \mathcal{X}, \mathcal{Y} and the game has loss function $f(x, y) : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$, convex in x and concave in y,

$$\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} f(x, y) = \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} f(x, y)$$

Analogues for other games, nothing as powerful

Rich equilibrium structure impossible with more players

But can we go beyond scalar payoff functions?
Basic Results

"Optimization" variant

Theorem (Sion, 1958)

If the players have convex compact strategy spaces \mathcal{X}, \mathcal{Y} and the game has loss function $f(x, y) : \mathcal{X} \times \mathcal{Y} \mapsto \mathbb{R}$, convex in x and concave in y,

$$\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} f(x, y) = \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} f(x, y)$$

- Analogues for other games, nothing as powerful
- Rich equilibrium structure impossible with more players
- But can we go beyond scalar payoff functions?
Basic Results

"Optimization" variant

Theorem (Sion, 1958)

If the players have convex compact strategy spaces \(\mathcal{X}, \mathcal{Y} \) and the game has loss function \(f(x, y) : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \), convex in \(x \) and concave in \(y \),

\[
\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} f(x, y) = \sup_{y \in \mathcal{Y}} \inf_{x \in \mathcal{X}} f(x, y)
\]

- Analogues for other games, nothing as powerful
- Rich equilibrium structure impossible with more players
- But can we go beyond scalar payoff functions?
Preliminaries

- **Two-player zero-sum game**
 - Player X plays against nameless adversary Y (Nature)
 - X plays $x \in X$, Y plays $y \in Y$
 - X loses $u(x, y)$, Y wins $u(x, y)$

- **Minimax value** $V = \min_{x \in X} \max_{y \in Y} u(x, y)$ when U is scalar

- **Vector-valued games**
 - Natural to model utility of mutually independent factors
 - What can we say when u is vector-valued? Minimax impossible
Explicit Quantification

- Minimax (strong) duality is the conjunction of two statements involving value V:
 1. $\min_{x \in X} \max_{y \in Y} u(x, y) \leq V \iff \exists x \in X : \forall y \in Y : u(x, y) \leq V$
 2. $\max_{y \in Y} \min_{x \in X} u(x, y) \geq V \iff \exists y \in Y : \forall x \in X : u(x, y) \geq V$

and weak duality $\max_{y \in Y} \min_{x \in X} u(x, y) \leq \min_{x \in X} \max_{y \in Y} u(x, y)$.

- Each player can force the other into playing in a way that guarantees the payoff in a half-line.
- In this worst-case scenario, the only meaningful control is a uniform guarantee over adversary strategies.
Explicit Quantification

- Minimax (strong) duality is the conjunction of two statements involving value V:

1. $\min_{x \in X} \max_{y \in Y} u(x, y) \leq V \iff \exists x \in X : \forall y \in Y : u(x, y) \leq V$
2. $\max_{y \in Y} \min_{x \in X} u(x, y) \geq V \iff \exists y \in Y : \forall x \in X : u(x, y) \geq V$

and weak duality $\max_{y \in Y} \min_{x \in X} u(x, y) \leq \min_{x \in X} \max_{y \in Y} u(x, y)$.

- Each player can force the other into playing in a way that guarantees the payoff in a half-line.

- In this worst-case scenario, the only meaningful control is a uniform guarantee over adversary strategies.
Minimax (strong) duality is the conjunction of two statements involving value V:

1. $\min_{x \in X} \max_{y \in Y} u(x, y) \leq V \iff \exists x \in X : \forall y \in Y : u(x, y) \leq V$
2. $\max_{y \in Y} \min_{x \in X} u(x, y) \geq V \iff \exists y \in Y : \forall x \in X : u(x, y) \geq V$

and weak duality $\max_{y \in Y} \min_{x \in X} u(x, y) \leq \min_{x \in X} \max_{y \in Y} u(x, y)$.

Each player can force the other into playing in a way that guarantees the payoff in a half-line.

In this worst-case scenario, the only meaningful control is a uniform guarantee over adversary strategies.
Setup

- What happens when the payoff is vector-valued?
- What payoffs can X force the adversary into settling for?
- Can X force payoffs in some target set? ¹

¹ (Not possible in a one-shot game even with convexity.)
Setup

What happens when the payoff is vector-valued?

What payoffs can X force the adversary into settling for?

Can X force payoffs in some target set? ¹

¹ (Not possible in a one-shot game even with convexity.)
Setup

- What happens when the payoff is vector-valued?
- What payoffs can X force the adversary into settling for?
- Can X force payoffs in some target set? \(^1\)

\(^1\) (Not possible in a one-shot game even with convexity.)
Blackwell’s Game

- A two-player zero-sum repeated game with vector-valued payoff $u(x, y)$
- On iteration t, X plays x_t first, then Y plays y_t
- **Goal of player** X: “Approach" target set S regardless of Y’s actions
- **Assumptions**
 - Any projection $u_\theta(x, y) = \langle \theta, u(x, y) \rangle$ for any vector θ satisfies minimax conditions (e.g. if u is bilinear)
 - S, X, Y are convex, compact
 - These are unnecessary in many cases
Definition: Approachability

Consider a set S. Define S to be approachable if there exists a possibly adaptive strategy $x_1, x_2, x_3, \cdots \in X$ such that for any sequence $y_1, y_2, \cdots \in Y$,

$$\lim_{T \to \infty} d\left(\frac{1}{T} \sum_{t=1}^{T} u(x_t, y_t), S\right) = 0$$

where d is the distance in Euclidean norm. In other words, if $\bar{u}_T = \frac{1}{T} \sum_{t=1}^{T} u(x_t, y_t)$,

$$\lim_{T \to \infty} \inf_{z \in S} \| \bar{u}_T - z \| = 0$$

2For simplicity, throughout only consider subsets of \mathbb{R}^d for finite d.
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>
A set S is:

- **Satisfiable** (by X) if $\exists x \in X : \forall y \in Y : u(x, y) \in S$
 (player can force S playing first)

- **Response-satisfiable** (by X) if $\forall y \in Y : \exists x \in X : u(x, y) \in S$
 (player can force S playing second)

- Satisfiability \implies response-satisfiability
- When does response-satisfiability \implies satisfiability?
- Other relations hold (S is satisfiable by X \iff S^c is response-satisfiable by Y)
A set S is:

- **Satisfiable** (by X) if $\exists x \in X : \forall y \in Y : u(x, y) \in S$ (player can force S playing first)

- **Response-satisfiable** (by X) if $\forall y \in Y : \exists x \in X : u(x, y) \in S$ (player can force S playing second)

- Satisfiability \implies response-satisfiability

- When does response-satisfiability \implies satisfiability?

- Other relations hold (S is satisfiable by X \iff S^c is response-satisfiable by Y)
Some Related Notions

A set S is:

- **Satisfiable** (by X) if $\exists x \in \mathcal{X} : \forall y \in \mathcal{Y} : u(x, y) \in S$
 (player can force S playing first)

- **Response-satisfiable** (by X) if $\forall y \in \mathcal{Y} : \exists x \in \mathcal{X} : u(x, y) \in S$
 (player can force S playing second)

- Satisfiability \implies response-satisfiability

- When does response-satisfiability \implies satisfiability?

- Other relations hold (S is satisfiable by X \iff S^c is response-satisfiable by Y)
Satisfiability for Halfspaces

- Minimax theorem: \((-\infty, c]\) is approachable \iff c \geq V
- Consider any halfspace \(H = \{s : \langle \theta, s \rangle \leq c\}\)
- This induces scalar game with payoff \(u_\theta(x, y) = \langle \theta, u(x, y) \rangle\)
- \(H\) is approachable
 \iff \((-\infty, c]\) is approachable in scalar game
 \iff c \geq \min_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} u_\theta(x, y)
 \iff \exists x \in \mathcal{X} : \forall y \in \mathcal{Y} : u(x, y) \in H
 \iff H\) is satisfiable
Minimax theorem: $(-\infty, c]$ is approachable $\iff c \geq V$

Consider any halfspace $H = \{s : \langle \theta, s \rangle \leq c \}$

This induces scalar game with payoff $u_\theta(x, y) = \langle \theta, u(x, y) \rangle$

H is approachable

$\iff (-\infty, c]$ is approachable in scalar game

$\iff c \geq \min_{x \in X} \max_{y \in Y} u_\theta(x, y)$

$\iff \exists x \in X : \forall y \in Y : u(x, y) \in H$

$\iff H$ is satisfiable
Response-Satisfiability \iff Halfspace-Satisfiability

Theorem

\(S \) is response-satisfiable \iff every halfspace \(H \supseteq S \) is satisfiable.

Proof.

(\Rightarrow)

Take any halfspace \(H_0 = \{ s : \langle \theta_0, s \rangle \leq c_0 \} \supseteq S \).

Now \(S \) is response-satisfiable $\Rightarrow \forall y : \exists x_y : u(x_y, y) \in S$ $\Rightarrow u(x_y, y) \in H_0$ $\Rightarrow u_{\theta_0}(x_y, y) \leq c_0$. Thus

\[c_0 \geq \max_{y \in Y} u_{\theta_0}(x_y, y) \geq \max_{y \in Y} \min_{x \in X} u_{\theta_0}(x, y) = \min_{x \in X} \max_{y \in Y} u_{\theta_0}(x, y). \]

If \(x^* \) is the minimizer here, we have

\[\forall y \in Y : c_0 \geq u_{\theta_0}(x^*, y) \Rightarrow u(x^*, y) \in H_0. \]
Theorem

\[S \text{ is response-satisfiable} \iff \text{every halfspace } H \supseteq S \text{ is satisfiable.} \]

Proof.

\((\implies)\)

Take any halfspace \(H_0 = \{ s : \langle \theta_0, s \rangle \leq c_0 \} \supseteq S. \)

Now \(S \) is response-satisfiable \(\implies \forall y : \exists x_y : u(x_y, y) \in S \implies u(x_y, y) \in H_0 \implies u_{\theta_0}(x_y, y) \leq c_0. \) Thus

\[c_0 \geq \max_{y \in Y} u_{\theta_0}(x_y, y) \geq \max_{y \in Y} \min_{x \in X} u_{\theta_0}(x, y) = \min_{x \in X} \max_{y \in Y} u_{\theta_0}(x, y). \]

If \(x^* \) is the minimizer here, we have

\[\forall y \in Y : c_0 \geq u_{\theta_0}(x^*, y) \implies u(x^*, y) \in H_0. \]
Proof.

\[(\Leftarrow)\]

\(S\) not response-satisfiable \iff \exists y_0 \in \mathcal{Y} : \forall x : u(x, y_0) \notin S.\)

The set \(U = \{ \forall x \in \mathcal{X} : u(x, y_0) \} \) is convex, but \(S \cap U = \emptyset\) by assumption. So there is a hyperplane \(H\) separating \(S\) and \(U\), defining a halfspace \(H \supseteq S\). We have for all \(x\) that \(u(x, y_0) \notin S \implies u(x, y_0) \notin H\), so \(H\) is not satisfiable.
Halfspace-Satisfiability \iff Approachability

Theorem

Every halfspace $H \supseteq S$ is satisfiable $\iff S$ is approachable.

Proof.

(\implies) Constructive; the algorithm that approaches S relies on a halfspace oracle $O(H)$ for any $H \supseteq S$, with $O(H) = \{ x \in \mathcal{X} : \forall y \in \mathcal{Y} : u(x, y) \in H \}$.

(\impliedby) $\exists H \supseteq S$ not satisfiable $\implies \exists H \supseteq S$ not approachable

$\implies S$ is not approachable
Every halfspace $H \supseteq S$ is satisfiable \iff S is approachable.

Proof.

(\implies) Constructive; the algorithm that approaches S relies on a halfspace oracle $O(H)$ for any $H \supseteq S$, with

$$O(H) = \{x \in \mathcal{X} : \forall y \in \mathcal{Y} : u(x, y) \in H\}.$$

(\impliedby) $\exists H \supseteq S$ not satisfiable $\implies \exists H \supseteq S$ not approachable $\implies S$ is not approachable \hfill \Box
The following are equivalent characterizations of S:

1. Response-satisfiable
2. Halfspace-satisfiable
3. Approachable

The first is often used to derive the third.
Outline

1. Two-Player Zero-Sum Games
2. Blackwell Approachability
 - Approachability Basics
 - Related Notions
 - Blackwell’s Algorithm
3. Potential-Based Approachability and Algorithms
 - Potential-Based Approachability
 - Potential-Based Prediction Algorithms
 - Connections to Drifting Games and Online Learning
4. No-Regret Algorithms and Approachability
5. Summary
An Approachability Algorithm

- Assume oracle $O(H)$ for any $H \supseteq S$, with
 $O(H) = \{ x \in X : \forall y \in Y : u(x, y) \in H \}$

- Write $A_T = \frac{1}{T} \sum_{t=1}^{T} u(x_t, y_t)$, and the projection
 $\pi_S(A_t) = \arg \min_{v \in S} \| A_t - v \|

- Algorithm: On iteration t, if $A_{t-1} \notin S$, play $O(H_{t-1})$, where
 $H_{t-1} = \{ x : \forall y \in Y : \langle \frac{A_{t-1} - \pi_S(A_{t-1})}{\|A_{t-1} - \pi_S(A_{t-1})\|}, u(x, y) - \pi_S(A_{t-1}) \rangle \leq 0 \}$

- Assumptions: $\| u(x, y) \| \leq 1 \forall x, y$; S is contained in the unit ball also
An Approachability Algorithm
Proof of Approachability (Algorithm)

\[\|A_t - \pi_S(A_t)\|^2 \leq \|A_t - \pi_S(A_{t-1})\|^2 \]
\[= \|A_t - A_{t-1}\|^2 + \|A_{t-1} - \pi_S(A_{t-1})\|^2 + 2 \langle A_{t-1} - \pi_S(A_{t-1}), A_t - A_{t-1} \rangle \]
\[\leq \|A_t - A_{t-1}\|^2 + \|A_{t-1} - \pi_S(A_{t-1})\|^2 + 2 \langle A_{t-1} - \pi_S(A_{t-1}), A_t - A_{t-1} \rangle \]

Now \(A_t - A_{t-1} = \frac{u(x_t, y_t) - A_{t-1}}{t} = \frac{1}{t} ((u(x_t, y_t) - \pi_S(A_{t-1})) - (A_{t-1} - \pi_S(A_{t-1}))),\) so

\[\langle A_{t-1} - \pi_S(A_{t-1}), A_t - A_{t-1} \rangle = \frac{1}{t} \langle A_{t-1} - \pi_S(A_{t-1}), u(x_t, y_t) - \pi_S(A_{t-1}) \rangle \]
\[- \frac{1}{t} \langle A_{t-1} - \pi_S(A_{t-1}), A_{t-1} - \pi_S(A_{t-1}) \rangle \]
\[\leq -\frac{1}{t} \|A_{t-1} - \pi_S(A_{t-1})\|^2 \]

Therefore \(\|A_t - \pi_S(A_t)\|^2 \leq \left(1 - \frac{2}{t}\right) \|A_{t-1} - \pi_S(A_{t-1})\|^2 + \frac{4}{t^2} \]
\[\implies \|A_t - \pi_S(A_t)\|^2 \leq O\left(\frac{1}{t}\right). \]
Two-Player Zero-Sum Games
Blackwell Approachability
Potential-Based Approachability and Algorithms
No-Regret Algorithms and Approachability
Summary

Proof of Approachability (Algorithm)

\[\|A_t - \pi_S(A_t)\|^2 \leq \|A_t - \pi_S(A_{t-1})\|^2 \]
\[= \|A_t - A_{t-1}\|^2 + \|A_{t-1} - \pi_S(A_{t-1})\|^2 + 2 \langle A_{t-1} - \pi_S(A_{t-1}), A_t - A_{t-1} \rangle \]
\[\leq \|A_t - A_{t-1}\|^2 + \|A_{t-1} - \pi_S(A_{t-1})\|^2 + 2 \langle A_{t-1} - \pi_S(A_{t-1}), A_t - A_{t-1} \rangle \]

Now \(A_t - A_{t-1} = \frac{u(x_t, y_t) - A_{t-1}}{t} = \frac{1}{t} ((u(x_t, y_t) - \pi_S(A_{t-1})) - (A_{t-1} - \pi_S(A_{t-1}))) \), so

\[\langle A_{t-1} - \pi_S(A_{t-1}), A_t - A_{t-1} \rangle = \frac{1}{t} \langle A_{t-1} - \pi_S(A_{t-1}), u(x_t, y_t) - \pi_S(A_{t-1}) \rangle \]
\[- \frac{1}{t} \langle A_{t-1} - \pi_S(A_{t-1}), A_{t-1} - \pi_S(A_{t-1}) \rangle \]
\[\leq - \frac{1}{t} \|A_{t-1} - \pi_S(A_{t-1})\|^2 \]

Therefore \(\|A_t - \pi_S(A_t)\|^2 \leq \left(1 - \frac{2}{t}\right) \|A_{t-1} - \pi_S(A_{t-1})\|^2 + \frac{4}{t^2} \)
\[\Rightarrow \|A_t - \pi_S(A_t)\|^2 \leq O \left(\frac{1}{t} \right) . \]
Proof of Approachability (Algorithm)

\[
\|A_t - \pi_S(A_t)\|^2 \leq \|A_t - \pi_S(A_{t-1})\|^2 \\
= \|A_t - A_{t-1}\|^2 + \|A_{t-1} - \pi_S(A_{t-1})\|^2 + 2 \langle A_{t-1} - \pi_S(A_{t-1}), A_t - A_{t-1}\rangle \\
\leq \|A_t - A_{t-1}\|^2 + \|A_{t-1} - \pi_S(A_{t-1})\|^2 + 2 \langle A_{t-1} - \pi_S(A_{t-1}), A_t - A_{t-1}\rangle \\
\]

Now \(A_t - A_{t-1} = \frac{u(x_t, y_t) - A_{t-1}}{t} = \frac{1}{t} ((u(x_t, y_t) - \pi_S(A_{t-1})) - (A_{t-1} - \pi_S(A_{t-1})))\), so

\[
\langle A_{t-1} - \pi_S(A_{t-1}), A_t - A_{t-1}\rangle = \frac{1}{t} \langle A_{t-1} - \pi_S(A_{t-1}), u(x_t, y_t) - \pi_S(A_{t-1})\rangle \\
- \frac{1}{t} \langle A_{t-1} - \pi_S(A_{t-1}), A_{t-1} - \pi_S(A_{t-1})\rangle \\
\leq -\frac{1}{t} \|A_{t-1} - \pi_S(A_{t-1})\|^2 \\
\]

Therefore \(\|A_t - \pi_S(A_t)\|^2 \leq \left(1 - \frac{2}{t}\right) \|A_{t-1} - \pi_S(A_{t-1})\|^2 + \frac{4}{t^2} \)

\[\implies \|A_t - \pi_S(A_t)\|^2 \leq O\left(\frac{1}{t}\right).\]
Outline

1. Two-Player Zero-Sum Games
2. Blackwell Approachability
 - Approachability Basics
 - Related Notions
 - Blackwell’s Algorithm
3. Potential-Based Approachability and Algorithms
 - Potential-Based Approachability
 - Potential-Based Prediction Algorithms
 - Connections to Drifting Games and Online Learning
4. No-Regret Algorithms and Approachability
5. Summary
Generalizing Blackwell’s Strategy

- Keep track of **potential function** $\Phi(s)$ that measures distance to set S ($\Phi(s) = 0 \ \forall s \in S$)
- Want to minimize $\Phi(R_t)$ whenever possible
- Idea: Force halfspace in the direction of $\nabla \Phi(A_{t-1})$, but translated to intersect $\pi_S(A_{t-1})$
- Blackwell strategy: $\Phi(x) = \inf_{y \in S} \|x - y\|^2$
- Loss bound $\Phi(A_t) \in O(\ln t / t)$
Generalizing Blackwell’s Strategy

- Keep track of *potential function* $\Phi(s)$ that measures distance to set S ($\Phi(s) = 0 \ \forall s \in S$)
- Want to minimize $\Phi(R_t)$ whenever possible
- Idea: Force halfspace in the direction of $\nabla \Phi(A_{t-1})$, but translated to intersect $\pi_S(A_{t-1})$
- Blackwell strategy: $\Phi(x) = \inf_{y \in S} \|x - y\|^2$
- Loss bound $\Phi(A_t) \in \mathcal{O}(\ln t / t)$
Generalizing Blackwell’s Strategy

- Keep track of potential function $\Phi(s)$ that measures distance to set S ($\Phi(s) = 0 \ \forall s \in S$)
- Want to minimize $\Phi(R_t)$ whenever possible
- Idea: Force halfspace in the direction of $\nabla \Phi(A_{t-1})$, but translated to intersect $\pi_S(A_{t-1})$
- Blackwell strategy: $\Phi(x) = \inf_{y \in S} \|x - y\|^2$
- Loss bound $\Phi(A_t) \in \mathcal{O}(\ln t / t)$
Potential-Based Approachability

The diagram illustrates the concept of potential-based approachability in a game context. The set \(\{ x : \Phi(x) = \text{const.} \} \) represents the set of states where the potential function \(\Phi \) is constant. The function \(\ell(p_t, J_t) \) likely denotes a loss function or a metric of some kind. The point \(A_{t-1} \) and the set \(S \) are key elements in defining the approachability of a strategy. The inequality \(\{ u : a_{t-1} \cdot u = c_{t-1} \} \) might represent constraints on the utility vector \(u \) for a given action \(a_{t-1} \) with a specific weight \(c_{t-1} \). The diagram suggests a dynamic interaction between these elements in the context of potential-based approachability.
Outline

1. Two-Player Zero-Sum Games
2. Blackwell Approachability
 - Approachability Basics
 - Related Notions
 - Blackwell’s Algorithm
3. Potential-Based Approachability and Algorithms
 - Potential-Based Approachability
 - Potential-Based Prediction Algorithms
 - Connections to Drifting Games and Online Learning
4. No-Regret Algorithms and Approachability
5. Summary
Potential-Based Prediction with Experts

- Prediction with expert advice
 - On iteration t, N experts each predict in decision space \mathcal{Z}
 - Algorithm predicts $z_{A,t} \in \mathcal{Z}$, Nature reveals outcome y_t
 - Expert i incurs loss $l_{i,t}$, algorithm incurs $l_{A,t}$
 - Instantaneous regret $r_{i,t} = l_{A,t} - l_{i,t}$ to expert i

- As a game with losses in \mathbb{R}^N, one expert per coordinate
 - $r_t \in \mathbb{R}^N$ is vector with components $r_{i,t}$; $R_t = \sum_{i=1}^{t} r_i$
 - Game loss at time t is $u_t = r_t$

- Solved with a potential $\Phi(u) = \psi \left(\sum_{i=1}^{N} \phi(u_i) \right)$
 - ϕ nonnegative, increasing, twice-diff.
 - ψ concave, nonnegative, strictly increasing, twice-diff.
 - Relaxing additivity changes little (unlike drifting games)
Potential-Based Prediction with Experts

- Prediction with expert advice
 - On iteration t, N experts each predict in decision space \mathcal{Z}
 - Algorithm predicts $z_{A,t} \in \mathcal{Z}$, Nature reveals outcome y_t
 - Expert i incurs loss $l_{i,t}$, algorithm incurs $l_{A,t}$
 - Instantaneous regret $r_{i,t} = l_{A,t} - l_{i,t}$ to expert i

- ...As a game with losses in \mathbb{R}^N, one expert per coordinate
 - $r_t \in \mathbb{R}^N$ is vector with components $r_{i,t}$; $R_t = \sum_{i=1}^t r_i$
 - Game loss at time t is $u_t = r_t$

- ...Solved with a potential $\Phi(u) = \psi \left(\sum_{i=1}^N \phi(u_i) \right)$
 - ϕ nonnegative, increasing, twice-diff.
 - ψ concave, nonnegative, strictly increasing, twice-diff.
 - Relaxing additivity changes little \textit{(unlike} drifting games\textit{)}

Potential-Based Prediction with Experts

- Prediction with expert advice
 - On iteration t, N experts each predict in decision space Z
 - Algorithm predicts $z_{A,t} \in Z$, Nature reveals outcome y_t
 - Expert i incurs loss $l_{i,t}$, algorithm incurs $l_{A,t}$
 - Instantaneous regret $r_{i,t} = l_{A,t} - l_{i,t}$ to expert i

- ...As a game with losses in \mathbb{R}^N, one expert per coordinate
 - $r_t \in \mathbb{R}^N$ is vector with components $r_{i,t}$; $R_t = \sum_{i=1}^{t} r_i$
 - Game loss at time t is $u_t = r_t$

- ...Solved with a potential $\Phi(u) = \psi \left(\sum_{i=1}^{N} \phi(u_i) \right)$
 - ϕ nonnegative, increasing, twice-diff.
 - ψ concave, nonnegative, strictly increasing, twice-diff.
 - Relaxing additivity changes little (unlike drifting games)
\[\Phi(R_t) \approx \Phi(R_{t-1}) + \langle \nabla \Phi(R_{t-1}), R_t - R_{t-1} \rangle = \Phi(R_{t-1}) + \langle r_t, \nabla \Phi(R_{t-1}) \rangle \]

- To try to keep \(\Phi(R_t) \) decreasing, control \(\langle r_t, \nabla \Phi(R_{t-1}) \rangle \)
- Generalized Blackwell condition: \(\sup_{y_t \in \mathcal{Y}} \langle r_t, \nabla \Phi(R_{t-1}) \rangle \leq 0 \)

Theorem

Let \(C(r_t) = \sup_{u \in \mathbb{R}^N} \psi' \left(\sum_{i=1}^{N} \phi(u_i) \right) \sum_{i=1}^{N} \phi''(u_i) r_{i,t}^2 \). Then for all \(n \geq 1 \),

\[\Phi(R_n) \leq \Phi(0) + \frac{1}{2} \sum_{t=1}^{n} C(r_t) \]
Generalized Blackwell Condition

Figure 2.1. An illustration of the Blackwell condition with $N = 2$. The dashed line shows the points in regret space with potential equal to 1. The prediction at time t changed the potential from $\Phi(R_{t-1}) = 1$ to $\Phi(R_t) = \Phi(R_{t-1} + r_t)$. Though $\Phi(R_t) > \Phi(R_{t-1})$, the inner product between r_t and the gradient $\nabla \Phi(R_{t-1})$ is negative, and thus the Blackwell condition holds.
Proof of Loss Bound (Potential-Based Forecaster)

Using Taylor’s Theorem and denoting \(\xi \) as some vector \(\in \mathbb{R}^N \),

\[
\Phi(R_t) = \Phi(R_{t-1}) + \langle r_t, \nabla \Phi(R_{t-1}) \rangle + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left[\frac{\partial^2 \Phi}{\partial u_i \partial u_j} \right] \xi r_i, t \ r_j, t
\]

\[
\leq \Phi(R_{t-1}) + \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left[\frac{\partial^2 \Phi}{\partial u_i \partial u_j} \right] \xi r_i, t \ r_j, t
\]

\[
\leq \Phi(R_{t-1}) + \frac{1}{2} \left(\psi'' \left(\sum_{i=1}^{N} \phi(\xi_i) \right) \left(\sum_{i=1}^{N} \phi'(\xi_i) r_i, t \right)^2 + \psi' \left(\sum_{i=1}^{N} \phi(\xi_i) \right) \sum_{i=1}^{N} \phi''(\xi_i) r_i, t^2 \right)
\]

Using the concavity of \(\psi \), we therefore have

\[
\Phi(R_t) \leq \Phi(R_{t-1}) + \frac{1}{2} \left(\psi' \left(\sum_{i=1}^{N} \phi(\xi_i) \right) \sum_{i=1}^{N} \phi''(\xi_i) r_i, t^2 \right) \leq \Phi(R_{t-1}) + \frac{1}{2} C(r_t)
\]

Induction then gives the result.
Applications of Potential-Based Prediction

- What algorithms obey Blackwell condition and conditions on Φ?

- Weighted average predictors
 - Predict with a weighted average of experts,
 \[w_{i,t} \propto \nabla_i \Phi(R_{t-1}) \]
 - Always satisfies Blackwell condition
 - Hedge ($\Phi(u) = \sum_{i=1}^{N} e^{\eta u_i}$), Blackwell’s strategy
 \[(\Phi(u) = \sum_{i=1}^{N} \left(u_i \right)^2_{\text{+}}) \]
 - Perceptron/Winnow (special mirror descent)
 - Adaboost, polynomial potential, various forms of regret, specialists...
Recap: Potential-Based Approachability

- To try to keep $\Phi(R_t)$ decreasing, control $\langle r_t, \nabla \Phi(R_{t-1}) \rangle$
- Only very relaxed halfspace control possible, so potential can still increase
- But master loss bound is still very useful
Recap: Potential-Based Approachability

- To try to keep $\Phi(R_t)$ decreasing, control $\langle r_t, \nabla \Phi(R_{t-1}) \rangle$
- Only very relaxed halfspace control possible, so potential can still increase
- But master loss bound is still very useful
Blackwell approachability is intimately tied with the question: what can be done by forcing halfspaces?

Drifting games deal with this as well
- Halfspace forcing is a constraint on adversary, by definition satisfying Blackwell condition
- Drifting games set weights = “derivative" of potential
- Boosting, hedging (NormalHedge) are examples

Game-theoretic supermartingales
- Vovk’s algorithms, markets involve forcing a function to lie on a half-line
Approachability Implies No-Regret Strategies

- Potential-based approachability algorithms can be used to play games (experts = finite strategy set)
- Want to keep regrets (payoffs) low, i.e. approach $S = \{ s : s_i \leq 0 \ \forall i \leq N \}$
- S is response-satisfiable (put all weight on best expert) \implies approachable
- So there exists a set of player moves such that

$$
\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \max_{i \in [N]} r_{i,t} = 0 \implies \lim_{T \to \infty} \max_{i \in [N]} \frac{1}{T} \sum_{t=1}^{T} r_{i,t} = 0
$$

- This verifies the existence of an algorithm with asymptotically vanishing regret - Hannan consistency.
Approachability Implies No-Regret Strategies

- Potential-based approachability algorithms can be used to play games (experts = finite strategy set).
- Want to keep regrets (payoffs) low, i.e. approach $S = \{ s : s_i \leq 0 \ \forall i \leq N \}$.
- S is response-satisfiable (put all weight on best expert) \implies approachable.
- So there exists a set of player moves such that
 $$\lim_{T \to \infty} \frac{1}{T} \sum_{t=1}^{T} \max_{i \in [N]} r_{i,t} = 0 \implies \lim_{T \to \infty} \max_{i \in [N]} \frac{1}{T} \sum_{t=1}^{T} r_{i,t} = 0$$
- This verifies the existence of an algorithm with asymptotically vanishing regret - *Hannan consistency.*
Approachability and No-Regret Strategies

- Approachability games lead to no-regret learning algorithms (potential-based)
- Natural problem considered: online linear optimization (experts setting)
- Generic hammer to apply approachability?
 - Abernethy et al. (2011) produce calibrated probability predictions in $\{0, \frac{1}{m}, \ldots, 1\}$ with it
 - Payoff space \mathbb{R}^{m+1}, Φ measures discrepancy between actual and predicted probabilities for each bin
 - S is a small ball around the origin, response-satisfiable
 - Construction: Halfspace oracle possible to implement efficiently, approachability algorithm: GD
 - Other such examples?
Approachability and No-Regret Strategies

- Approachability games lead to no-regret learning algorithms (potential-based)
- Natural problem considered: online linear optimization (experts setting)
- Generic hammer to apply approachability?
 - Abernethy et al. (2011) produce calibrated probability predictions in \(\{0, \frac{1}{m}, \ldots, 1\} \) with it
 - Payoff space \(\mathbb{R}^{m+1} \), \(\Phi \) measures discrepancy between actual and predicted probabilities for each bin
 - \(S \) is a small ball around the origin, response-satisfiable
 - Construction: Halfspace oracle possible to implement efficiently, approachability algorithm: GD
 - Other such examples?
Approachability and No-Regret Strategies

- Approachability games lead to no-regret learning algorithms (potential-based)
- Natural problem considered: online linear optimization (experts setting)
- Generic hammer to apply approachability?
 - Abernethy et al. (2011) produce calibrated probability predictions in \(\{0, \frac{1}{m}, \ldots, 1\} \) with it
 - Payoff space \(\mathbb{R}^{m+1} \), \(\Phi \) measures discrepancy between actual and predicted probabilities for each bin
 - \(S \) is a small ball around the origin, response-satisfiable
 - Construction: Halfspace oracle possible to implement efficiently, approachability algorithm: GD
- Other such examples?
Blackwell approachability: generalization of minimax to vector-valued games

Can be viewed as minimizing a potential (moving down a conservative force field)

Framework to study halfspace-forcing phenomena in algorithms
Many thanks! Questions?
Sources

- Cesa-Bianchi and Lugosi: Prediction, Learning and Games. 2006. (Ch. 7)