The **Hedge**(η) Algorithm

Yoav Freund

January 8, 2014
Outline

Hedge(η) Algorithm

Hedging vs. Halving

Bound on total loss

Upper bound on $\sum_{i=1}^{N} w_i^{T+1}$

Lower bound on $\sum_{i=1}^{N} w_i^{T+1}$

Combining Upper and Lower bounds

tuning η

Lower Bounds
The hedging problem

- N possible actions
- At each time step $t = 1, 2, \ldots, T$:
 - Algorithm chooses a distribution p^t over actions.
 - Losses $0 \leq \ell_i^t \leq 1$ of all actions $i = 1, \ldots, N$ are revealed.
 - Algorithm suffers expected loss $p^t \cdot \ell^t$
- **Goal:** minimize total expected loss
- **What is p^t?**
 - Distribution wealth in a portfolio.
 - The algorithm chooses one of the actions at random.
- Prediction is a **game** played between algorithm and nature, in which the goal of the algorithm is to minimize regret.
Experts vs. actions

- Experts interaction (1 round):
 1. **Experts** make their predictions.
 2. **Algorithm** makes its prediction.
 3. **Nature** Chooses label/outcome.
 4. **Loss** is associated with each action according to a loss function.

- Actions interaction (1 round):
 1. **Algorithm** a distribution over the actions.
 2. **Nature** reveals the loss of each action.
 3. **Loss** of algorithm is expected loss wrt to chosen distribution.
Hedging vs. Halving / pros and cons

- **Expert framework assumes more structure:** algorithm gets expert predictions before choosing its own prediction. The set of loss vectors is restricted - better for algorithm. Experts framework achieves better bounds.

- **Actions framework assumes bounded losses:** In experts framework, we can deal with some unbounded loss functions.

- **Partial visibility:** In experts framework, the outcome defines *all* of the losses. In actions framework you might not know the loss of all of the actions (the *multiple-arm-bandit problem*).

- **Actions framework is simple and general:** We can usually get bounds in the experts framework using algorithm designed for the actions framework, but the constants can be worse.

In this class, we will concentrate on the actions framework.
Hedging vs. Halving

- Like halving - we want to zoom into best action.
- Unlike halving - no action is perfect.
- Basic idea - reduce probability of lossy actions, but not all the way to zero.

Modified Goal: minimize Regret = difference between expected total loss and minimal total loss of repeating one action.

\[
\sum_{t=1}^{T} p_t \cdot \ell_t - \min \left(\sum_{i}^{T} \ell_i \right)
\]
Using Hedge to generalize halving alg.

- Suppose that there is no perfect action.
- actions: i for $i \in \{1, 2, \ldots, N\}$
- Now each iteration $t \in \{1, \ldots, T\}$ of game consists of two steps:
 - Algorithm chooses a distribution $\mathbf{p}^t = (p_1^t, \ldots, p_N^t)$ over the actions.
 - Nature chooses the loss of each action: $\ell^t = (\ell_1^t, \ldots, \ell_N^t)$, $\ell_i^t \in [0, 1]$.
- Algorithm’s cumulative loss is $L_A^T = \sum_{t=1}^{T} \mathbf{p}^t \cdot \ell^t$
- Cumulative loss of action i is $L_i^t = \sum_{t=1}^{T} \ell_i^t$
- Our goal is to minimize the regret: $L_A^t - \min_i L_i^t$ for all t and all possible loss sequences.
The **Hedge(\(\eta\)) Algorithm**

Consider action \(i\) at time \(t\)

- **Total loss:**
 \[
 L_i^t = \sum_{s=1}^{t-1} \ell_i^s
 \]

- **Weight:**
 \[
 w_i^t = e^{-\eta L_i^t}
 \]

- \(\eta > 0\) is the learning rate parameter. Halving: \(\eta \to \infty\)

- **Probability:**
 \[
 p_i^t = \frac{w_i^t}{\sum_{j=1}^{N} w_j^t}, \quad p^t = \frac{w^t}{\sum_{j=1}^{N} w_j^t}
 \]
Bound on the loss of **Hedge**(η)Algorithm

- **Theorem (main theorem)**
 For any sequence of loss vectors ℓ^1, \ldots, ℓ^T, and for any $i \in \{1, \ldots, N\}$, we have
 $$L_{\text{Hedge}(\eta)} \leq \frac{\ln(N) + \eta L_i}{1 - e^{-\eta}}.$$

- **Proof**: by combining upper and lower bounds on $\sum_{i=1}^{N} w_i^{T+1}$
Lemma (upper bound)

For any sequence of loss vectors ℓ^1, \ldots, ℓ^T we have

$$\ln \left(\sum_{i=1}^{N} w_i^{T+1} \right) \leq -(1 - e^{-\eta}) L_{\text{Hedge}(\eta)}. $$
Proof of upper bound (slide 1)

- If $a \geq 0$ then a^r is convex.
- For $r \in [0, 1]$, $a^r \leq 1 - (1 - a)r$
Proof of upper bound (slide 2)

Applying $a^r \leq 1 - (1 - a)^r$ where $a = e^{-\eta}, r = \ell_i^t$

\[
\sum_{i=1}^{N} w_i^{t+1} = \sum_{i=1}^{N} w_i^{t} e^{-\eta \ell_i^t}
\]

\[
\leq \sum_{i=1}^{N} w_i^{t} (1 - (1 - e^{-\eta}) \ell_i^t)
\]

\[
= \left(\sum_{i=1}^{N} w_i^{t} \right) \left(1 - (1 - e^{-\eta}) \frac{w^t}{\sum_{i=1}^{N} w_i^{t}} \cdot \ell^t \right)
\]

\[
= \left(\sum_{i=1}^{N} w_i^{t} \right) (1 - (1 - e^{-\eta}) p^t \cdot \ell^t)
\]
Hedge(η)

- Bound on total loss
- Upper bound on $\sum_{i=1}^{N} w_i^{T+1}$

Proof of upper bound (slide 3)

- Combining

$$\sum_{i=1}^{N} w_i^{t+1} \leq \left(\sum_{i=1}^{N} w_i^{t} \right) \left(1 - (1 - e^{-\eta}) p^t \cdot \mathcal{L}^t \right)$$

- for $t = 1, \ldots, T$
- yields

$$\sum_{i=1}^{N} w_i^{T+1} \leq N \prod_{t=1}^{T} \left(1 - (1 - e^{-\eta}) p^t \cdot \mathcal{L}^t \right)$$

$$\leq \exp \left(\ln N - (1 - e^{-\eta}) \sum_{t=1}^{T} p^t \cdot \mathcal{L}^t \right)$$

since $1 + x \leq e^x$ for $x = -(1 - e^{-\eta})$.
Lower bound on $\sum_{i=1}^{N} w_{i}^{T+1}$

For any $j = 1, \ldots, N$:

$$\sum_{i=1}^{N} w_{i}^{T+1} \geq w_{j}^{T+1} = e^{-\eta L_j}$$
Combining Upper and Lower bounds

- Combining bounds on \(\ln \left(\sum_{i=1}^{N} w_i^{T+1} \right) \)

\[-\eta L_j \leq \ln \sum_{i=1}^{N} w_i^{T+1} \leq \ln N - (1 - e^{-\eta}) \sum_{t=1}^{T} p^t \cdot \ell^t\]

- Reversing signs, using \(L_{Hedge}(\eta) = \sum_{t=1}^{T} p^t \cdot \ell^t \) and reorganizing we get

\[L_{Hedge}(\eta) \leq \frac{\ln N + \eta L_i}{1 - e^{-\eta}}\]
Hedge(η)

Tuning η

How to Use Expert Advice

$L_A(y) - L_\varepsilon$
Tuning \(\eta \)

- Suppose \(\min_i L_i \leq \tilde{L} \)
- set
 \[
 \eta = \ln \left(1 + \sqrt{\frac{2 \ln N}{\tilde{L}}} \right) \approx \sqrt{\frac{2 \ln N}{\tilde{L}}}
 \]
- Then
 \[
 L_{\text{Hedge}(\eta)} \leq \frac{-\ln(w_i^1) + \eta L_i}{1 - e^{-\eta}} \leq \min_i L_i + \sqrt{2\tilde{L} \ln N} + \ln N
 \]
Tuning η as a function of T

- trivially $\min_i L_i \leq T$, yielding

$$L_{\text{Hedge}}(\eta) \leq \min_i L_i + \sqrt{2T \ln N} + \ln N$$

- per iteration we get:

$$\frac{L_{\text{Hedge}}(\eta)}{T} \leq \min_i \frac{L_i}{T} + \sqrt{\frac{2 \ln N}{T}} + \frac{\ln N}{T}$$
Hedge\((\eta)\)

Lower Bounds

How good is this bound?

- **Very good!** There is a closely matching lower bound!
- There exists a stochastic adversarial strategy such that with high probability for any hedging strategy \(S\) after \(T\) trials
 \[
 L_S - \min_i L_i \geq (1 - o(1))\sqrt{2T \ln N}
 \]
- The adversarial strategy is random, extremely simple, and does not depend on the hedging strategy!
The adversarial strategy

- Adversary sets each loss ℓ_i^t independently at random to 0 or 1 with equal probabilities $(1/2, 1/2)$.
- Obviously, nothing to learn!
 \[L_S \approx T/2. \]
- On the other hand $\min_i L_i \approx T/2 - \sqrt{2T \ln N}$
- The difference $L_S - \min_i L_i$ is due to unlearnable random fluctuations!
- Detailed proof in “Adaptive Game playing using multiplicative weights” Freund and Schapire.
The adversarial construction
Summary

- Given learning rate η the $\text{Hedge}(\eta)$ algorithm satisfies
 \[L_{\text{Hedge}(\eta)} \leq \frac{\ln N + \eta L_i}{1 - e^{-\eta}} \]

- Setting $\eta \approx \sqrt{\frac{2 \ln N}{T}}$ guarantees
 \[L_{\text{Hedge}(\eta)} \leq \min_i L_i + \sqrt{2T \ln N} + \ln N \]

- A trivial random data, for which there is nothing to be learned forces any algorithm to suffer this total regret.