

Genetic Characterization of a Syndromic Cortical Dysplasia and the Development of a Small Animal Model

Gregory G. Heuer, MD/PhD Ksenia Orlova, Whitney Parker, Kevin A. Strauss, Erik G. Puffenberger, Gordon H. Baltuch, D. Holmes Morton, and Peter B. Crino

Pennsylvania Neurosurgical Society 2009 Meeting

Studying the Molecular Biology of Cortical Dysplasia

Crino lab focus- the genetics and the molecular mechanisms and that lead to Focal Cortical Dysplasia (FCD)

Roadblocks in studying FCD:

Most cases of FCD occur sporadically and are not associated with a known inherited genetic cause

Limited animal models to study cortical dysplasia

Goals

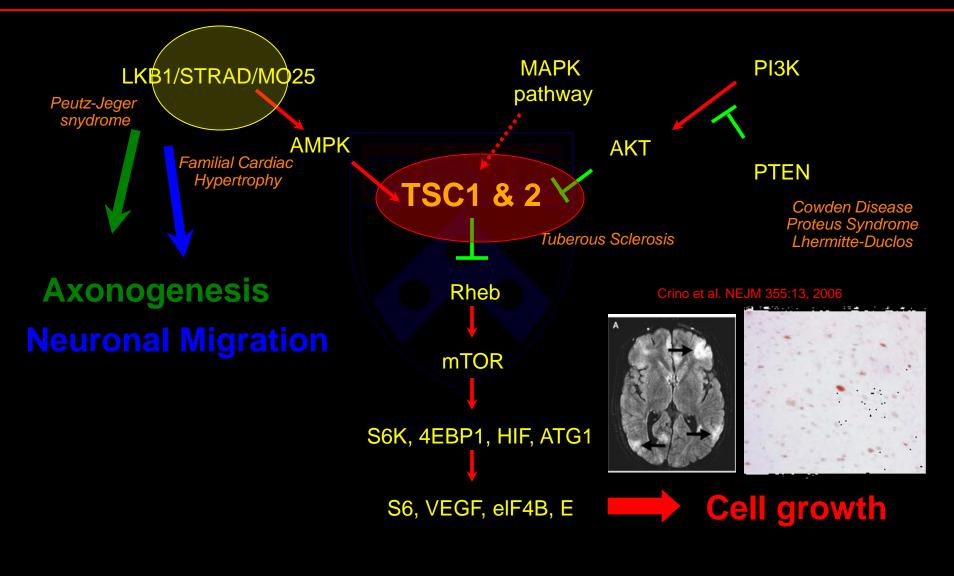
Short-term: identify gene(s) altered within the lesion that are involved at the cellular level with the development of FCD

Long-term: develop molecular based treatment strategies to treat these conditions

Malformations of Cortical Development-Disorders of Abnormal Proliferation

Tuberous Sclerosis

Focal Cortical Dysplasia w/ balloon cells

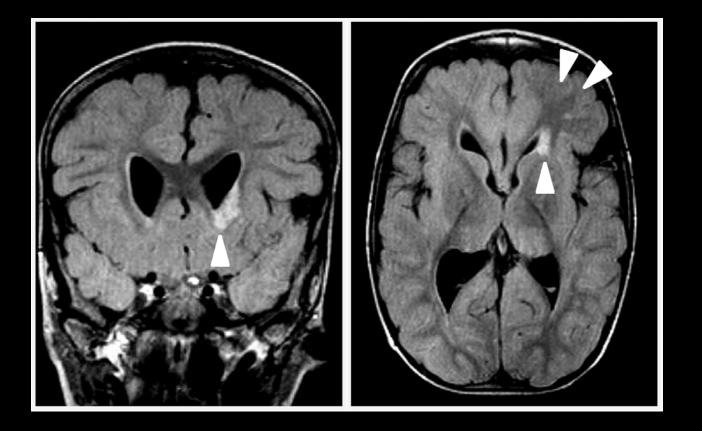

Hemimegalencephaly

All lesions have:1.disorganized lamination2. neuronal dysmorphism,3. enlarged cells known as ballooncells or giant cells

mTOR Pathway and Associated Disorders

Clinic for Special Children Pretzel Syndrome: Clinical Features

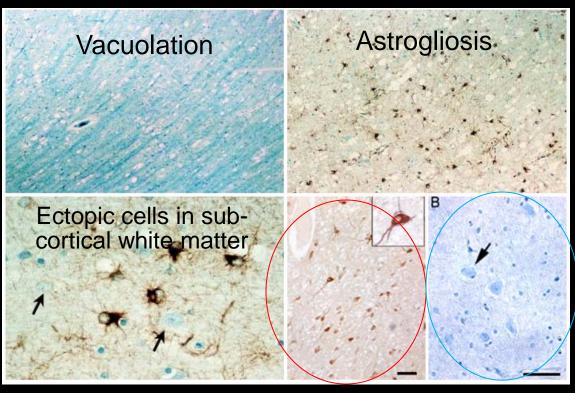
Table 1: Clinical features of 16 patients with Pretzel Syndrome


Clinical Variable	Percent of patients affected (n=16)
Prenatal	
Polyhydramnios	100
Preterm labor [a]	75
Postnatal	
Macrocephaly [b]	100
Infantile-onset partial epileps	y 100
Hypotonia	100
Craniofacial dysmorphism	100
Skeletal muscle hypoplasia	100
Joint laxity	100
Strabismus	56
Atrial septal defect	25
Nephrocalcinosis [c]	13
Diabetes insipidus [d]	13
Supraventricular tachycardia	6
Leukemia	6
Developmental Domain [e]	Maximum developmental age (range in months)
C	
Gross motor	6-14
 Fine motor-adaptive 	4-10 :

01000 110001	Q. 1.4
Fine motor-adaptive	4-10
Language-communication	2-6
Personal-social	2-6

NOTES

- Mean onset of labor at 31 weeks gestation, range 25-37 weeks
- b Due to a combination of megalencephaly and hydrocephalus.
- Renal ultrasounds were only performed in four patients, two of whom (imaged at ages 6 and 28 years) had nephrocalcinosis.
- d One patient with DI had bilateral nephrocalcinosis on CT scan.
- The cause of DI was mixed, with both central and nephrogenic components.
- e Developmental outcomes based on Denver Developmental Screening Test II


Pretzel Syndrome: Syndromic Cortical Dysplasia

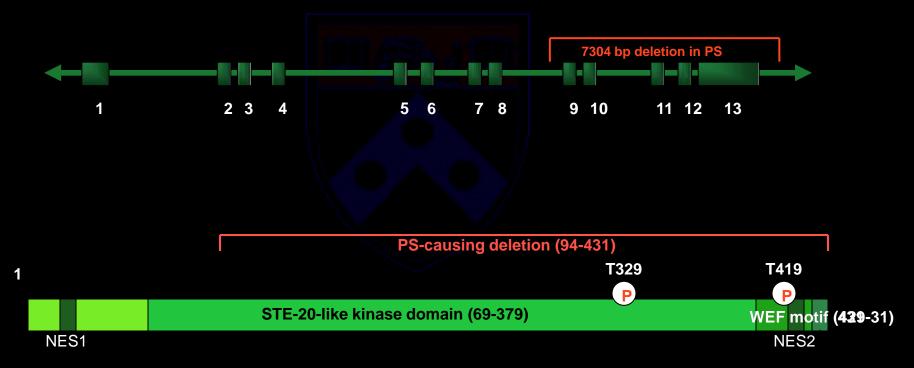
Pretzel Syndrome: Syndromic Cortical Dysplasia: HISTOPATHOLOGY

S6 Positive CYTOMEGALY

Hypercellularity

ectopic neurons in the subcortical white matter

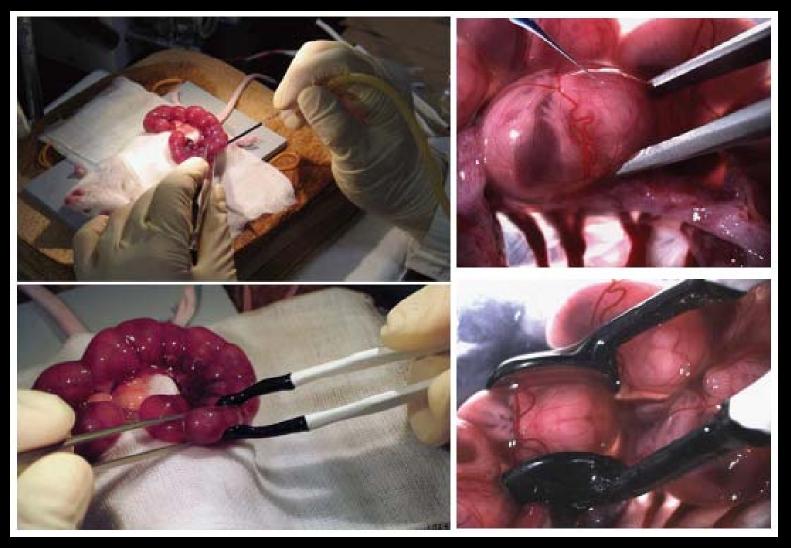
gray/white matter blurring


cytomegalic cells

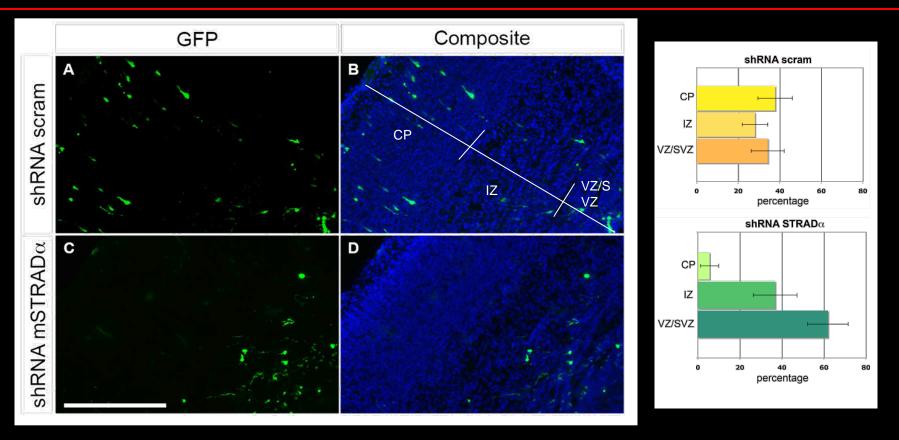
Activation of mTOR pathway

Pretzel Syndrome Mapping Analyses- using single nucleotide polymorphism (SNP) arrays

large homozygous deletion in $STRAD\alpha$


STRAD α (17q23.3) gene and protein with

PS-causing deletion


Puffenberger et al., 2007

Development of Animal Models of FCD

Methods: In utero electroporation (IUE) of embryonic mouse brains

Knockdown of STRAD α *in vivo* results in failure of STRAD α -deficient cells to migrate into the cortical plate

Conclusions

Discovered a new genetic form of cortical dysplasia, Pretzel syndrome

This condition shares histopathologic features with type IIb focal cortical dysplasia, tuberous sclerosis, hemimegalencephaly

Developed an animal model of focal cortical dysplasia using the newly discovered condition that results in cortical migration disorders

Future Directions

Genetic characterization of other forms of cortical dysplasia

Further characterization of animal model of pretzel syndrome and the molecular interactions leading to the migration abnormality

Analysis of sporadic samples of FCD for genetic alterations in genes known to cause or found to cause syndromic cortical dysplasia, with special emphasis on genes in the mTOR signaling pathway.

Contributors

Crino Lab: Peter Crino Marianna Baybis Whitney Parker

Ksenia Orlova

Neurosurgery: Phillip Storm CHOP M.Sean Grady Gordon Baltuch

Clinic for Special Children: Erik Puffenberger **Kevin Strauss D.** Holmes Morton http://www.clinicforspecialchildren.org

Eleonora Aronica, Amsterdam Howard Weiner, NYU Guy McKann, Columbia

