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Independent Components
Analysis

Introduction

‘I shouldn’t be surprised if it hailed a good deal
tomorrow’, Eeyore was saying . . . ‘Being fine to-
day doesn’t Mean Anything. It has no sig – what’s
that word? Well, it has none of that.’

– The House at Pooh Corner, AA Milne, 1928.

Most measured quantities are actually mixtures of
other quantities. Typical examples are (a) sound sig-
nals in a room with several people talking simulta-
neously, (b) an electroencephalogram (EEG) signal,
which contains contributions from many different
brain regions, and (c) person’s height, which is deter-
mined by contributions from many different genetic
and environmental factors. Science is, to a large
extent, concerned with establishing the precise nature
of the component processes responsible for a given
set of measured quantities, whether these involve
height, EEG signals, or even IQ. Under certain condi-
tions, the signals underlying measured quantities can
be recovered by making use of ICA. ICA is a member
of a class of blind source separation (BSS) methods.

The success of ICA depends on one key assump-
tion regarding the nature of the physical world. This
assumption is that independent variables or signals1

are generated by different underlying physical pro-
cesses. If two signals are independent, then the value
of one signal cannot be used to predict anything about
the corresponding value of the other signal. As it is
not usually possible to measure the output of a single
physical process, it follows that most measured sig-
nals must be mixtures of independent signals. Given
such a set of measured signals (i.e., mixtures), ICA
works by finding a transformation of those mixtures,
which produces independent signal components, on
the assumption that each of these independent com-
ponent signals is associated with a different physical
process. In the language of ICA, the measured sig-
nals are known as signal mixtures, and the required
independent signals are known as source signals.

ICA has been applied to separation of different
speech signals [1]2, analysis of EEG data [6], func-
tional magnetic resonance imaging (fMRI) data [7],
image processing [2], and as a model of biological
image processing [10].

Before embarking on an account of the mathe-
matical details of ICA, a simple, intuitive example of
how ICA could separate two speech signals is given.
However, it should be noted that this example could
equally well apply to any physically measured set of
signals, and to any number of signals (e.g., images,
biomedical data, or stock prices).

Applying ICA to Speech Data

Consider two people speaking at the same time in
a room containing two microphones, as depicted in
Figure 1. If each voice signal is examined at a fine
time scale, then it is apparent that the amplitude of
one voice at any given point in time is unrelated to
the amplitude of the other voice at that time. The
reason that the amplitudes of two voices are unrelated
is that they are generated by two unrelated physical
processes (i.e., by two different people). If we know
that the voices are unrelated, then one key strategy for
separating voice mixtures (e.g., microphone outputs)
into their constituent voice components is to extract
unrelated time-varying signals from these mixtures.
The property of being unrelated is of fundamental
importance.

Source 1
Source 1

Mixture 1

Mixture 2

Source 2

Source 2

ICA

Figure 1 ICA in a nutshell: If two people speak at the
same time in a room containing two microphones, then the
output of each microphone is a mixture of two voice signals.
Given these two signal mixtures, ICA can recover the two
original voices or source signals. This example uses speech,
but ICA can extract source signals from any set of two or
more measured signal mixtures, where each signal mixture
is assumed to consist of a linear mixture of source signals
(•see text) Q2
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2 Independent Components Analysis

While it is true that two voice signals are unre-
lated, this informal notion can be captured in terms of
statistical independence (see Introduction to Prob-
ability, which is often truncated to independence. Ifbsa723

two or more signals are statistically independent of
each other, then the value of one signal provides no
information regarding the value of the other signals.

The Number of Sources and Mixtures

One important fact about ICA is often not appre-
ciated. Basically, there must be at least as many
different mixtures of a set of source signals as there
are source signals. For the example of speech sig-
nals, this implies that there must be at least as many
microphones (different voice mixtures) as there are
voices (source signals).

Effects of Mixing Signals

When a set of two or more independent source signals
are mixed to make a corresponding set of signal
mixtures, as shown in Figure 1, three effects follow.

• Independence. Whereas source signals are inde-
pendent, their signal mixtures are not. This is
because each source signal contributes to every
mixture, and the mixtures cannot, therefore, be
independent.

• Normality. The central limit theorem ensures bsa086
that a signal mixture that is the sum of almost
any signals yields a bell-shaped, normal or
Gaussian histogram. In contrast, the histogram bsa270
of a typical source signal has a non-Gaussian
structure (see Figure 2).

• Complexity. The complexity of any mixture is
greater than (or equal to) that of its simplest
(i.e., least complex) constituent source signal.
This ensures that extracting the least complex
signal from a set of signal mixtures yields a
source signal [9].

These three effects can be used either on their own
or in combination to extract source signals from
signal mixtures. The effects labeled normality and
complexity are used in projection pursuit [5] and bsa506
complexity pursuit [4, 8], respectively, and the effects
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Figure 2 Signal mixtures have Gaussian or normal histograms. Signals (top row) and corresponding histograms of signal
values (bottom row), where each histogram approximates the probability density function (pdf) of one signal. The top
panels display only a small segment of the signals used to construct displayed histograms. A speech source signal (a), and
a histogram of amplitude values in that signal (d). A sawtooth source signal (b), and its histogram (e). A signal mixture
(c), which is the sum of the source signals on the left and middle, and its bell-shaped histogram (f)
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labeled independence and normality are used together
in ICA (also see [9]).

Representing Multiple Signals

A speech source signal s1 is represented as s1 =
(s1

1 , s2
1 , . . . , sN

1 ), where s1 adopts amplitudes s1
1 , then

s2
1 , and so on; superscripts specify time and subscripts

specify signal identity (e.g., speaker identity). We will
be considering how to mix and unmix a set of two or
more signals, and we define a specific set of two time-
varying speech signals s1 and s2 in order to provide
a concrete example. Now, the amplitudes of both
signals can be written as a vector variable s, which
can be rewritten in one of several mathematically
equivalent forms:

s =
(

s1

s2

)
(1)

=
(

(s1
1 , s2

1 , . . . , sN
1 )

(s1
2 , s2

2 , . . . , sN
2 )

)
. (2)

We introduce the transpose operator, which simply
transforms rows into columns (or vice versa), and is
defined by s = (s1, s2)

T .

Mixing Signals

The different distance of each source (i.e., person)
from a microphone ensures that each source con-
tributes a different amount to the microphone’s out-
put. The microphone’s output is, therefore, a linear
mixture x1 that consists of a weighted sum of the
two source signals x1 = as1 + bs2, where the mixing
coefficients a and b are determined by the distance
of each source from each microphone. As we are
concerned here with unmixing a set of two signal
mixtures (see Figure 1), we need another microphone
in a different location from the first. In this case, the
microphone’s output x2 is x2 = cs1 + ds2, where the
mixing coefficients are c and d.

Unmixing Signals

Generating mixtures from source signals in this linear
manner ensures that each source signal can be recov-
ered by a linearly recombining signal mixtures. The
precise nature of this recombination is determined by

a set of unmixing coefficients (α, β, γ, δ), such that
s1 = αx1 + βx2 and s2 = γ x1 + δx2. Thus, the prob-
lem solved by ICA, and by all other BSS methods,
consists of finding values for these unmixing coeffi-
cients.

The Mixing and Unmixing Matrices

The set of mixtures defines a vector variable x =
(x1, x2)

T , and the transformation from s to x defines
a mixing matrix A:

x =
(

a b

c d

) (
s1

1 , s2
1 , . . . , sN

1

s1
2 , s2

2 , . . . , sN
2

)

= As. (3)

The mapping from x to s = (s1, s2)
T defines an

optimal unmixing matrix W∗ = (w1, w2)
T with (row)

weight vectors wT
1 = (α, β) and wT

2 = (γ, δ)

s =
(

α β

γ δ

)(
x1

1 , x2
1 , . . . , xN

1
x1

2 , x2
2 , . . . , xN

2

)

= (w1, w2)
T (x1, x2) (4)

= W∗x. (5)

It can be seen that W∗ reverses, or inverts, the
effects of A, and Indeed, W∗ could be estimated from
the matrix inverse W∗ = A−1, if A were known3.
However, as we are ultimately concerned with finding
W∗ when A is not known, we cannot, therefore,
use A−1 to estimate W∗. For arbitrary values of
the unmixing coefficients, the unmixing matrix is
suboptimal and is denoted W. In this case, the signals
extracted by W are not necessarily source signals, and
are denoted y = Wx.

Maximum Likelihood ICA

In practice, it is extremely difficult to measure the
independence of a set of extracted signals unless we
have some general knowledge about those signals.
In fact, the observations above suggest that we do
often have some knowledge of the source signals.
Specifically, we know that they are non-Gaussian,
and that they are independent. This knowledge can
be specified in terms of a formal model, and we can
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then extract signals that conform to this model. More
specifically, we can search for an unmixing matrix
that maximizes the agreement between the model and
the signals extracted by that unmixing matrix.

One common interpretation of ICA is as a max-
imum likelihood (ML) method for estimating the
optimal unmixing matrix W∗. Maximum likelihoodbsa200
estimation (MLE) is a standard statistical tool for
finding parameter values (e.g., the unmixing matrix
W) that provide the best fit of some data (e.g., the sig-
nals y extracted by W) to a given a model. The ICA
ML ‘model’ includes the adjustable parameters in W,
and a (usually fixed) model of the source signals.
However, this source signal model is quite vague
because it is specified only in terms of the general
shape of the histogram of source signals. The fact
that the model is vague means that we do not have
to know very much about the source signals.

As noted above, mixtures of source signals are
almost always Gaussian (see Figure 2), and it is fairly
safe to assume that non-Gaussian signals must, there-
fore, be source signals. The amount of ‘Gaussian-
ness’ of a signal can be specified in terms of its
histogram, which is an approximation to a probability
density function (pdf) (see Figure 2). A pdf ps(s) is
essentially a histogram in which bin widths �s are
extremely small. The value of the function ps(s

t ) is
the probability density of the signal s at the value
st , which is the probability that the signal s lies
within a small range around the value4 st . As a pure
speech signal contains a high proportion of silence,
its pdf is highly ‘peaky’ or leptokurtotic, with a peak
around zero (see Figure 3). It, therefore, makes sense
to specify a leptokurtotic function (see Kurtosis) asbsa334

our model pdf for speech source signals.
As we know the source signals are independent,

we need to incorporate this knowledge into our
model. The degree of mutual independence between
signals can be specified in terms of their joint pdf (see
Figure 3). By analogy, with the pdf of a scalar signal,
a joint pdf defines the probability that the values
of a set of signals s = (s1, s2)

T fall within a small
range around a specific set of values st = (st

1, st
2)

T .
Crucially, if these signals are mutually independent,
then the joint pdf ps of s can be expressed as the
product of the pdfs (ps1, ps2 ) of its constituent signals
s1 and s2. That is, ps = ps1 × ps2, where the pdfs
ps1 and ps2 of the signals s1 and s2 (respectively) are
known as the marginal pdfs of the joint pdf ps.

1
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Figure 3 Marginal and joint probability density function
(pdfs) of two high-kurtosis independent variables (e.g.,
speech signals). Given a set of signals s = (s1, s2)

T , the
pdf of each signal is essentially a histogram of values in
that signal, as indicated by the two curves plotted along the
horizontal axes. Similarly, the joint pdf ps of two signals
is essentially a two-dimensional histogram of pairs of
signal values st = (st

1, s
t
2) at time t . Accordingly, the joint

probability of observing values st = (st
1, s

t
2) is indicated by

the local density of plotted points on the horizontal plane.
This local density is an approximation to the joint pdf ps ,
which is indicated by the height of the solid surface. The
pdfs ps1 and ps2 of the signals s1 and s2 are the marginal
pdfs of the joint pdf ps

Using ML ICA, the objective is to find an unmix-
ing matrix W that yields extracted signals y = Wx,
which have a joint pdf as similar as possible to the
model joint pdf ps of the unknown source signals s.
This model incorporates the assumptions that source
signals are non-Gaussian (leptokurtotic, in the case
of speech) and independent. Fortunately, ICA seems
to be very robust with respect to differences between
model pdfs and the pdfs of source signals [3]. Note
that, as A and W are inverses of each other5, it
does not matter whether the model parameters are
expressed in terms of A or W.

Somewhat perversely, we can consider the prob-
ability of obtaining the observed mixtures x in the
context of such a model, where this probability is
known as the likelihood of the mixtures. We can then
pose the question: given that the source signals have
a joint pdf ps, which particular mixing matrix A (and,
therefore, which unmixing matrix W = A−1) is most
likely to have generated the observed signal mixtures
x? In other words, if the likelihood of obtaining the
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observed mixtures (from some unknown source sig-
nals with joint pdf ps) were to vary with A, then
which particular A would maximize this likelihood?

MLE is based on the assumption that if the
model joint pdf ps and the model parameters A
are correct, then a high probability (i.e., likelihood)
should be obtained for the mixtures x that were
actually observed. Conversely, if A is far from the
correct parameter values, then a low probability
of the observed mixtures would be expected. We
will assume that all source signals have the same
(leptokurtotic) pdf ps . This may not seem much to
go on, but it turns out to be perfectly adequate for
extracting source signals from signal mixtures.

The Nuts and Bolts of ML ICA

Consider a (mixture) vector variable x with joint pdf
px, and a (source) vector variable s with joint pdf
ps, such that s = W∗x, where W∗ is the optimal
unmixing matrix. As noted above, the number of
source signals and mixtures must be equal, which
ensures that W∗ is square. In general, the relation
between the joint pdfs of x and s is

px(x) = ps(s)
∣∣W∗∣∣ , (6)

where |W∗| = |∂s/∂x| is the Jacobian of s with
respect to x. Equation (6) defines the likelihood of
the observed mixtures x, which is the probability of
x given W∗.

For any nonoptimal unmixing matrix W, the
extracted signals are y = Wx. Making the depen-
dence on W explicit, the likelihood px(x|W) of the
signal mixtures x given W is

px(x|W) = ps(Wx) |W| . (7)

We would naturally expect px(x|W) to be maximal
if W = W∗. Thus, (7) can be used to evaluate
the quality of any putative unmixing matrix W
in order to find that particular W that maximizes
px(x|W). By convention, (7) defines a likelihood
function L(W) of W, and its logarithm defines the log
likelihood function ln L(W). If the M source signals
are mutually independent, so that the joint pdf ps is
the product of its M marginal pdfs, then (7) can be
written

ln L(W) =
M∑
i

N∑
t

ln ps(wT
i xt ) + N ln |W|. (8)

Note that the likelihood L(W) is the joint pdf
px(x|W) for x, but using MLE, it is treated as if it
were a function of the parameter W. If we substitute
a commonly used leptokurtotic model joint pdf for
the source signals ps(y) = (1 − tanh(y)2), then

ln L(W) =
M∑
i

N∑
t

ln(1 − tanh(wT
i xt )2) + N ln |W|.

(9)

The matrix W that maximizes this function is the
maximum likelihood estimate of the optimal unmixing
matrix W∗. Equation (9) provides a measure of
similarity between the joint pdf of the extracted
signals y = Wx and the joint model pdf of the
source signals s. Having such a measure permits us
to use standard optimization methods to iteratively
update the unmixing matrix in order to maximize this
measure of similarity.

ICA, Principal Component Analysis and
Factor Analysis

ICA is related to conventional methods for analyzing
large data sets such as principal component analysis bsa501
(PCA) and factor analysis (FA). Whereas ICA bsa211
finds a set of source signals that are mutually
independent, PCA and FA find a set of signals that
are mutually decorrelated (consequently, neither PCA
nor FA could extract speech signals, for example).
The ‘forward’ assumption that signals from different
physical processes are uncorrelated still holds, but
the ‘reverse’ assumption that uncorrelated signals are
from different physical processes does not. This is
because lack of correlation is a weaker property than
independence. In summary, independence implies a
lack of correlation, but a lack of correlation does not
imply independence.

Notes

1. We use the term signal and variable interchangeably
here.

2. This is a seminal paper, which initiated the recent
interest in ICA.

3. The matrix inverse is analogous to the more familiar
inverse for scalar variables, such as x−1 = 1/x.

4. For brevity, we will abuse this technically correct,
but lengthy, definition by stating that ps(s

t ) is simply
the probability that s adopts the value st .
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5. Up to an irrelevant permutation of rows.
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Abstract: Independent• component analysis (ICA) extracts statistically independent variables from a set ofQ1

measured variables, where each measured variable is affected by a number of underlying physical causes.
Extracting such variables is desirable because independent variables are usually generated by different physical
processes. Thus, by extracting independent variables, ICA can effectively extract the underlying physical causes
for a given set of measured variables.
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